

CS 480
Fall 2015

Mike Lam, Professor

Visitor Design Pattern

A brief digression ...

● What are "design patterns" and why are they
relevant to compilers?

A brief digression ...

● What are "design patterns" and why are they
relevant to compilers?

– A reusable "template" or "pattern" that solves a
common design problem

● "Tried and true" solutions

– Main reference: Design Patterns: Elements of
Reusable Object-Oriented Software

● "Gang of Four:" Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides

Common Design Patterns

● Adapter – Converts one interface into another

● Factory – Allows clients to create objects without exactly specifying their
concrete class

● Flyweight – Manages large numbers of similar objects efficiently via sharing

● Iterator – Provides sequential access to a collection without exposing its
implementation details

● Monitor – Ensures mutually-exclusive access to member variables

● Null Object – Prevents null pointer dereferences by providing "default" object

● Observer – Track and update multiple dependents automatically on events

● Singleton – Provides global access to a single instance object

● Strategy – Encapsulate interchangeable algorithms

● Thread Pool – Manages allocation of available resources to queued tasks

● Visitor – Iterator over a structure (usually a recursive structure)

Design Patterns

● Pros

– Faster development

– More robust code (if implemented properly)

– More readable code (for those familiar with patterns)

– Improved maintainability

● Cons

– Increased abstraction

– Increased complexity

– Philosophical: Suggests language deficiencies
● Solution: Consider using a different language

Visitor Pattern

● Visitor: don't mix data and actions

– Separates the representation of an object structure from the
definition of operations on that structure

– Keeps data class definitions cleaner

– Allows the creation of new operations without modifying all
data classes

– Solves a general issue with OO languages
● Lack of multiple dispatch (choosing a concrete method based on two

objects' data types)
● Less useful in functional languages b/c of functional style and more

robust pattern matching

General Form

● Data: AbstractElement (ASTNode)

– ConcreteElement1 (ASTProgram)

– ConcreteElement2 (ASTVariable)

– ConcreteElement3 (ASTFunction)

– etc.

– All elements define "Accept()" method that recursively calls "Accept()" on any
child nodes

● Actions: AbstractVisitor (DefaultASTVisitor)

– ConcreteVisitor1 (BuildParentLinks)

– ConcreteVisitor2 (CalculateNodeDepths)

– ConcreteVisitor3 (StaticAnalysis)
● (BuildSymbolTables)
● (TypeCheck)

– All visitors have "VisitX()" methods for each element type

Benefits

● Adding new operations is easy

– Just create a new concrete visitor

– In our compiler, create a new DefaultASTVisitor
subclass

● No wasted space for state in data classes

– Just maintain state in the visitors

– In our compiler, we will make a few exceptions for
state that is shared across many visitors (e.g.,
symbol tables)

Drawbacks

● Adding new data classes is hard

– This won't matter for us, because our AST types are
dictated by the grammar and won't change

● Breaks encapsulation for data members

– Visitors often need access to all data members

– This is ok for us, because our data objects are
basically just structs anyway (all data is public)

Minor Modifications

● "Accept()" → "traverse()"

● "Visit()" → "preVisit()" and "postVisit()"

– preVisit corresponds to a preorder traversal

– postVisit corresponds to a postorder traversal

● DefaultASTVisitor class

– Implements ASTVisitor interface

– Contains empty implementations of all "visit" methods

– Allows subclasses to define only the visit methods that are
relevant

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

