

CS 480
Fall 2015

Mike Lam, Professor

Bottom-Up (LR) Parsing

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Overview

● Two general parsing approaches

– Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

– Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A

V E

Ea

V

V+

=

b

c

Top-down Bottom-up

Shift-Reduce Parsing

● Top-down (LL) parsers

– Left-to-right scan, Leftmost derivation

– Recursive routines, one per non-terminal (recursive descent)

– Implicit stack (system call stack)

– Requires more restrictive grammars

– Simpler to understand and possible to hand-code

● Bottom-up (LR) parsers

– Left-to-right scan, (reverse) Rightmost derivation

– "Shift"/push terminals and non-terminals onto a stack

– "Reduce"/pop to replace handles with non-terminals

– Less restrictive grammars

– Harder to understand and nearly always auto-generated

– Very efficient

Shift-Reduce Parsing

●

– shift 'a'

● a

– reduce (V → a)

● V

– shift '='

● V =

– shift 'b'

● V = b

– reduce (V → b)

● V = V

– reduce (E → V)

A

V E

Ea

V

V+

=

b

c

A → V = E
E → E + V
 | V
V → a | b | c

● V = E

– shift '+'

● V = E +

– shift 'c'

● V = E + c

– reduce (V → c)

● V = E + V

– reduce (E → E + V)

● V = E

– reduce (V = E)

●

(handles are underlined)

LR Parsing

● Creating an LR parser

– Build item sets ("canonical collections")
● These represent closures of parser states
● Use a dot (•) to represent status: "a • S b"

– Dots on the left end: "possibilities"
– Dots in the middle: "partially-complete"
– Dots on the right end: "complete"

● Similar to NFA state collections in subset construction

– Build ACTION / GOTO tables
● Encodes handle reduction decisions
● ACTION(state, terminal) = { shift, reduce, accept }
● GOTO(state, non-terminal) = state

LR Parsing

● Item sets ("canonical
collections")

– Productions from the grammar
with a dot to indicate the
current position

– One for each position in each
production

– Take the closure and add more
states if the dot lies to the left of
a non-terminal

● (Denoted here with "~")

S → a S b
 | a b

 CC
0
: S' → • S

 ~ S → • a S b
 ~ S → • a b

 CC
1
: S' → S •

 CC
2
: S → a • S b

 S → a • b
 ~ S → • a S b
 ~ S → • a b

 CC3: S → a S • b

 CC
4
: S → a S b •

 CC
5
: S → a b •

LR Parsing

● How much lookahead do we need?

– Depends on how complicated the grammar is

– LR(k) – multiple lookaheads (not necessary)

– LR(1) – single lookahead
● Very general and very powerful
● Lots of item sets; tedious to construct by hand

– LALR – special case of LR(1) that merges some states
● Less powerful, but easier to manage

– SLR – special case of LR(1) w/o explicit lookahead
● Uses FOLLOW sets to disambiguate
● Even less powerful, but much easier to understand

– LR(0) – no lookahead
● Severely restricted; most "interesting" grammars aren't LR(0)

SLR Parsing

● (Optional) Augment the grammar with S' → s0

● Construct LR(0) item sets and automaton

– Keep track of transitions ("moving the dot")

● Create ACTION and GOTO tables

– For each item set i
● If an item matches A → β • c γ

– ACTION(i, c) = "shift" to corresponding item set ("move the dot")
● If an item matches A → β •

– ACTION(i, x) = "reduce A → β" for all x in FOLLOW(A)
● If an item matches A → β • B γ

– GOTO(i, B) = corresponding item set ("move the dot")

– ACTION(S', $) = "accept"

SLR parsing

S → a S b
 | a b

LR(1) parsing

S → a S b
 | a b

LR Conflicts

● Shift/reduce

– Can be resolved by always shifting or by grammar modification

● Reduce/reduce

– Requires grammar modification to fix

A -> V = E .
E -> E + V .
E -> V .
V -> a | b | c . A -> B | C .

B -> x .
C -> x .

Shift/reduce conflict in LR(0)

Reduce/reduce conflict (all LR)

A -> B A x .
A -> .
B -> x .

Shift/reduce conflict (all LR)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

