CS 480
Fall 2015

Mike Lam, Professor

Bottom-Up (LR) Parsing

Source code

Current

focus Back end
------------------------ A
- Tokens Syntax tree ™. Machine code

oooo :
Oooooo :
gas = % = -
ooono ;
Oooooo .’
ooo

... Parsing __..~"Code Generation

------- - & Optimization
~

"Front end"

I Overview

 Two general parsing approaches

— Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

— Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A
Vv = E
Top-down a E + Y

Bottom-up

I Shift-Reduce Parsing

e Top-down (LL) parsers

— Left-to-right scan, Leftmost derivation

— Recursive routines, one per non-terminal (recursive descent)
— Implicit stack (system call stack)

— Requires more restrictive grammars

— Simpler to understand and possible to hand-code

e Bottom-up (LR) parsers

— Left-to-right scan, (reverse) Rightmost derivation

— "Shift"/push terminals and non-terminals onto a stack

— "Reduce"/pop to replace handles with non-terminals

— Less restrictive grammars

— Harder to understand and nearly always auto-generated
— Very efficient

I Shift-Reduce Parsing

. e V=E

— shift 'a’ — shift '+'
e a e V=E+

— reduce (V - a) — shift 'c’
oV e V=E+¢C

— shift '=' - reduce (V - c)
o\ = e V=E+V

— shift 'b' — reduce (E - E +V)
«V=Dh s V=E

— reduce (V - b) — reduce (V = E)

V=V .
- reduce (E - V)

(handles are underlined)

m >

<

I =11

v <M<

E
/I\
E| +
Vv
b
= E
+ V
| b | c

I LR Parsing

e Creating an LR parser

— Build item sets ("canonical collections")

e These represent closures of parser states

e Use a dot (¢) to represent status: "a+ S b"

— Dots on the left end: "possibilities"
— Dots in the middle: "partially-complete”
— Dots on the right end: "complete"

 Similar to NFA state collections in subset construction
— Build ACTION / GOTO tables

e Encodes handle reduction decisions
 ACTION(state, terminal) = { shift, reduce, accept }
e GOTO(state, non-terminal) = state

I LR Parsing

e |tem sets ("canonical
collections")

— Productions from the grammar
with a dot to indicate the
current position

— One for each position in each
production

— Take the closure and add more
states if the dot lies to the left of
a non-terminal

» (Denoted here with "~")

S-aSsSh
| a b

CcC S' 5. S
S—>°aSb
S—)'ab

CC.,: S' 5 S o

CC S - a-+*Shb
S—>a°b
S—>°aSb
S - eeab

CC S - aSe-ehb

CC S -~ aSsShb

CC S L ab

I LR Parsing

e How much lookahead do we need?

— Depends on how complicated the grammar is
— LR(K) — multiple lookaheads (not necessary)

- LR(1) — single lookahead

* Very general and very powerful
e Lots of item sets; tedious to construct by hand

— LALR — special case of LR(1) that merges some states
» Less powerful, but easier to manage
— SLR - special case of LR(1) w/o explicit lookahead

e Uses FOLLOW sets to disambiguate
* Even less powerful, but much easier to understand

— LR(0) — no lookahead
e Severely restricted; most "interesting” grammars aren't LR(0)

I SLR Parsing

e (Optional) Augment the grammar with S' - s,

e Construct LR(0) item sets and automaton

— Keep track of transitions ("moving the dot")
e Create ACTION and GOTO tables

— For each item set |

e Ifanitem matches A - Becy

— ACTION(i, c) = "shift" to corresponding item set ("move the dot")
e Ifanitem matches A — B¢

— ACTION(, x) = "reduce A - " for all x in FOLLOW(A)
e Ifanitem matches A - BBy

— GOTO(i, B) = corresponding item set ("move the dot")

— ACTION(S', $) = "accept”

State a b)
a S b 0 shifi(2)
1 accept
a b 2 shift(2) sluft(4)
3 shift(3)
4 reduce(S —ab) reduce(S — an)
3 reduce(S — a Sb) reduce(S — a Sp)
1
*S
S—e+asSh da
2
S S—aS+b S—aShbe
S—a+*Sb 7
S—a-*b b
S—easb | w4
S—e+ab S—abe

S -
|

QD D
o w

0

State

a

/S’,,,J [S e, S]
[S—=+aSh, 5]
[S—e+ab,5]
Fss] o 2

[S—+aSh,b]

[S—a*Sh,9]
[S—+ab,b]
[S—a=*bh,§]

0 | shifi(2)
1
2 | shifi(5) shift(4)
3 shift(6)
4
5 | shifi(5) shifi(8)
6
7 shift(9)
8 reduce(S — ab)
9 reduce(S — a S'b)
3 0
[S—aSeh,5] [S—aShbe 5]
S
b 4
[S—abe 5]
a a
/-\ 7 b 9
5 [S—aSeb,b] [S—aSbe b]
[S—+*aSh,b]
[S—a+*Sb,b]
[S—e+ab,b] 8
[S—a+*b, D] [S—abse, b]

accept

reduce(S — ab)

reduce(S — a Sb)

I LR Conflicts

e Shift/reduce

— Can be resolved by always shifting or by grammar modification
 Reduce/reduce

— Requires grammar modification to fix

A -> B A X

A ->
A->V =E B -> X
E->E+ V. Shifreduce conflict (all LR)
E ->V .
V->a | b | c . A->B | C
Shif/reduce confiict in LR(0) B -> X

C -> X

Reduce/reduce conflict (all LR)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

