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I Overview

 Two general parsing approaches

— Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

— Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals
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I Top-Down Parsing

root = createNode(S)
focus = root
push(null)

token = nextToken()

loop:
if (focus is non-terminal):
B = chooseRuleAndExpand(focus)
for each b in B.reverse():
focus.addChild(createNode(b))
push(b)
focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):

return root

else:
exit (ERROR)
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I Top-Down Parsing

e Main issue: choosing which rule to use

- With full lookahead, it would be relatively easy
e This would be very inefficient
— Can we do it with a single lookahead?

e That would be much faster



I LL(1) Parsing

e LL(1) grammars

- Left-to-right scan of the input string

- Leftmost derivation

— 1 symbol of lookahead

— Highly restricted form of context-free grammar

e No left recursion
 No backtracking



I Eliminating Left Recursion

e Left recursion: A - Aa |

- Often a result of left associativity (e.g., expression
grammar)

— Leads to infinite looping/recursion in an LL(1) parser
(try it!)
— To fix, unroll the recursion into a new non-terminal
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I Left Factoring

e Backtracking required: A - a3, | a3,

— Leads to ambiguous rule choice in LL(1) parser
e One lookahead (a) is not enough to pick a rule
— To fix, factor the choices into a new non-terminal
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I LL(1) Parsing

e LL(1) grammars are a subset of context-free grammars

— Often, non-LL(1) grammars can be transformed into LL(1) grammars
by left-factoring and eliminating left recursion

e LL(1) grammars can be parsed using a simple paradigm called
recursive descent

— Mutually-recursive procedures, one for each non-terminal
— Can be hand-coded relatively easily
— Implementation is directly guided by the grammar

e LL(1) parsers can also be auto-generated

— Similar to auto-generated lexers

— Tables created by a parser generator using FIRST and FOLLOW
helper sets



I LL(1) Parsing

» FIRST(q)

— Set of terminals (and €) that can appear at the start of a
sentence derived from a (can be a terminal or non-terminal)

e FOLLOW(A) set

— Set of terminals (and $) that can occur immediately after non-
terminal A in a sentential form

* FIRST+A - B)

— If € is notin FIRST(PB)

e FIRST+(A) = FIRST(p)
— Otherwise

e FIRST+(A) = FIRST() u FOLLOW(A)



I Calculating FIRST(a)

e Rule 1: ais aterminal a
- FIRST(a)={a}

e Rule 2: ais a non-terminal X

— Examine all productions X - Y, Y, ... Y,

e add FIRST(Y,)ifnotY, -*¢
e add FIRST(Y) ifY,...Y;, -*¢€ where]=I-1 (skip disappearing symbols)
— FIRST(X) is union of all of the above

e Rule 3: ais anon-terminal Xand X - ¢
— FIRST(X) includes ¢



ll calculating FoLLOW(A)

e Rule 1: FOLLOW(S) includes EOF / $
- Where S Is the start symbol

e Rule 2: for every production A -~ a B 3
- FOLLOW(B) includes everything in FIRST([3) except €

e Rule 3:ifA -~ aBor (A - aBBandFIRST(B) contains €)
— FOLLOW(B) includes everything in FOLLOW(A)
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