CS 480
Fall 2015

Mike Lam, Professor

Top-Down (LL) Parsing

Source code

Current

focus Back end
------------------------ A
- Tokens Syntax tree ™. Machine code

oooo :
Oooooo :
gas = % = -
ooono ;
Oooooo .’
ooo

... Parsing __..~"Code Generation

------- - & Optimization
~

"Front end"

I Overview

 Two general parsing approaches

— Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

— Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A
V = E
a E + E
Top-down Bottom-up
V V

I Top-Down Parsing

root = createNode(S)
focus = root
push(null)

token = nextToken()

loop:
if (focus is non-terminal):
B = chooseRuleAndExpand(focus)
for each b in B.reverse():
focus.addChild(createNode(b))
push(b)
focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):

return root

else:
exit (ERROR)

A- V =E
Vo al|b|oc
E - E + E
| V
A
\Y; = E
a E +
V
b

I Top-Down Parsing

e Main issue: choosing which rule to use

- With full lookahead, it would be relatively easy
e This would be very inefficient
— Can we do it with a single lookahead?

e That would be much faster

I LL(1) Parsing

e LL(1) grammars

- Left-to-right scan of the input string

- Leftmost derivation

— 1 symbol of lookahead

— Highly restricted form of context-free grammar

e No left recursion
 No backtracking

I Eliminating Left Recursion

e Left recursion: A - Aa |

- Often a result of left associativity (e.g., expression
grammar)

— Leads to infinite looping/recursion in an LL(1) parser
(try it!)
— To fix, unroll the recursion into a new non-terminal

A - B A

A 5 A Q -
| B A' 5 oo A'

I Left Factoring

e Backtracking required: A - a3, | a3,

— Leads to ambiguous rule choice in LL(1) parser
e One lookahead (a) is not enough to pick a rule
— To fix, factor the choices into a new non-terminal

=

A -
|

Q Q

™™
>
l

P

I LL(1) Parsing

e LL(1) grammars are a subset of context-free grammars

— Often, non-LL(1) grammars can be transformed into LL(1) grammars
by left-factoring and eliminating left recursion

e LL(1) grammars can be parsed using a simple paradigm called
recursive descent

— Mutually-recursive procedures, one for each non-terminal
— Can be hand-coded relatively easily
— Implementation is directly guided by the grammar

e LL(1) parsers can also be auto-generated

— Similar to auto-generated lexers

— Tables created by a parser generator using FIRST and FOLLOW
helper sets

I LL(1) Parsing

» FIRST(q)

— Set of terminals (and €) that can appear at the start of a
sentence derived from a (can be a terminal or non-terminal)

e FOLLOW(A) set

— Set of terminals (and $) that can occur immediately after non-
terminal A in a sentential form

* FIRST+A - B)

— If € is notin FIRST(PB)

e FIRST+(A) = FIRST(p)
— Otherwise

e FIRST+(A) = FIRST() u FOLLOW(A)

I Calculating FIRST(a)

e Rule 1: ais aterminal a
- FIRST(a)={a}

e Rule 2: ais a non-terminal X

— Examine all productions X - Y, Y, ... Y,

e add FIRST(Y,)ifnotY, -*¢
e add FIRST(Y) ifY,...Y;, -*¢€ where]=I-1 (skip disappearing symbols)
— FIRST(X) is union of all of the above

e Rule 3: ais anon-terminal Xand X - ¢
— FIRST(X) includes ¢

ll calculating FoLLOW(A)

e Rule 1: FOLLOW(S) includes EOF / $
- Where S Is the start symbol

e Rule 2: for every production A -~ a B 3
- FOLLOW(B) includes everything in FIRST([3) except €

e Rule 3:ifA -~ aBor (A - aBBandFIRST(B) contains €)
— FOLLOW(B) includes everything in FOLLOW(A)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

