

CS 480
Fall 2015

Mike Lam, Professor

Grammars

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Overview

● General topics

– Syntax (what a program looks like)

– Semantics (what a program means)

– Implementation (how a program executes)

Syntax

● Textbook: "the form of [a language's] expressions, statements,
and program units."

● In other words:

– What programs written in that language look like

– The appearance of the code

● Semantics deal with the meaning of a program

● Syntax and semantics are (ideally) closely related

● Goals of syntax analysis:

– Checking for program validity or correctness

– Facilitate translation (compiler) or execution (interpreter) of a program

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for PL

● Regular languages are not sufficient to describe programming
languages

– Core issue: DFAs can't count

– Consider the language of all matched parentheses

Syntax Analysis

● Tokens have no structure

– No inherent relationship between each other

– Need a way to describe hierarchy in a way that is closer to the
semantics of the language

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

=

total /

n

vals

sum()

Syntax Analysis

● Context-free language

– Description of a language's syntax

– Encodes hierarchy and structure of language tokens
● Usually represented using a tree

– Described by context-free grammars
● Usually written in Backus-Naur Form

– Recognized by pushdown automata
● Two major types: top-down and bottom-up
● Next two weeks

– Provide ways to control ambiguity, associativity, and precedence
in a language

Context-Free Grammars

● A context-free grammar is a 4-tuple (T, NT, S, P)

– T: set of terminal symbols (tokens)

– NT: set of nonterminal symbols

– S: start symbol (S ϵ NT)

– P: set of productions or rules:
● NT → (T U NT)+

Context-Free
Hierarchy

Regular

LL(1)

LR(1)

Context-Free

Backus-Naur Form

● Non-terminals vs. terminals

– Terminals are essentially tokens

– One special non-terminal: the start symbol

● Production rules

– Left hand side: single non-terminal

– Right hand side: sequence of terminals and/or non-terminals

– LHS is replaced by the RHS during generation/derivation

– Colloquially: "is composed of"

● Sentence: a sequence of terminals

– A sentence is valid in a language if it can be derived using the grammar

<assign> ::= <var> = <expr>
<var> ::= a | b | c
<expr> ::= <expr> + <expr>
 | <var>

A → V = E
V → a | b | c
E → E + E
 | V

Derivation

● Derivation: a series of grammar-permitted
transformations leading to a sentence

– Each transformation applies exactly one rule

– Each intermediate string of symbols is a sentential form

– Leftmost vs. rightmost derivations
● Which non-terminal do you expand first?

– Parse tree represents a derivation in tree form (the sentence
is the sequence of all leaf nodes)

● Built from the top down during derivation
● Final parse tree is called complete parse tree
● Represents a program, executed from the bottom up

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A → V = E
V → a | b | c
E → E + E
 | V

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A

V E

EE

A → V = E
V → a | b | c
E → E + E
 | V

A
V = E
a = E
a = E + E
a = V + E
a = b + E
a = b + V
a = b + c

a

V V

+

=

b c

Ambiguous Grammars

● An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence

– The semantics may be similar or identical, but there is a
difference syntactically

– Example: if/then/else construct

– It is important to be precise!

● Can usually be eliminated by rewriting the grammar

– Usually by making one or more rules more restrictive

Operator Associativity

● Does x+y+z = (x+y)+z or x+(y+z)?

– Former is left-associative

– Latter is right-associative

● Closely related to recursion

– Left-hand recursion → left associativity

– Right-hand recursion → right associativity

● Sometimes enforced explicitly in a grammar

– Different non-terminals on left- and right-hand sides of an operator

– Sometimes just noted with annotations

Operator Precedence

● Precedence determines the relative priority of operators
in a single production

● Does x+y*z = (x+y)*z or x+(y*z)?

– Former: "+" has higher precedence

– Latter: "*" has higher precedence

● Sometimes enforced explicitly in a grammar

– One non-terminal for each level of precedence

– Sometimes just noted with annotations

Grammar Examples

A → A x
 | x

A → x A
 | x

A → A + x
 | x

A → x + A
 | x

A → A + B
 | B
B → B * x
 | x

A → B | C
B → x
C → x

A → A + A
 | x

A → ifthen A else A
 | ifthen A
 | stmt

Left Recursive Right Recursive

Left Associative Right Associative

Ambiguous
(Associativity) Ambiguous

(Ad-hoc)
Ambiguous

("Danging Else" Probem)

Precedence
+ (lower)
* (higher)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

