
  

CS 480
Fall 2015

Mike Lam, Professor

Finite Automata Conversions
and Lexing



  

Finite Automata

● Finite automata transitions:

Regex NFA DFA Lexer

Thompson's
construction

Subset
construction

Lexer
generators

Hopcroft's
algorithm

Kleene's construction

Brzozowski's algorithm

(dashed lines indicate transitions to a minimized DFA)



  

Finite Automata

● RE to NFA: Thompson's construction

– Core insight: build up NFA using “templates”

● NFA to DFA: Subset construction

– Core insight: DFA node = subset of NFA nodes

– Core concept: use null closure to calculate subsets

● DFA minimization

– Core insight: create partitions, then keep splitting



  

Thompson's: Base cases



  

Thompson's: Concatenation



  

Thompson's: Concatenation



  

Thompson's: Union



  

Thompson's: Union



  

Thompson's: Closure



  

Thompson's: Closure

ε



  

Subset Example



  

Subset Example

{A}

{B,D}a

b
{C,D}



  

Subset Example



  

Subset Example

{A,E}

{B,D,E}
a

{C,D}
b

b {E}

a

b

a



  

Discussion Questions

● How long does it take to...

– Build an NFA?

– Run an NFA?

– Build a DFA?

– Run a DFA?



  

Efficiency Concerns

● Thompson's construction

– Runs in linear time to # of regex characters

– Results in linear space increase

● NFA execution

– Proportional to both NFA size and input string size

● Subset construction

– Potential exponential state space explosion

– A n-state NFA could require up to 2n DFA states

– However, this rarely happens in practice

● DFAs execution

– Proportional to input string size only



  

NFA/DFA complexity

● NFAs build quicker (linear) but run slower
– Better if you will only run the FA a few times

● DFAs build slower (worst case exponential) but run faster
– Better if you will run the FA many times

NFA DFA

Build time O(m) O(2m)

Run time O(m×n) O(n)

m = length of regular expression
n = length of input string



  

Lexers

● Auto-generated

– Table-driven: generic scanner, auto-generated 
tables

– Direct-coded: hard-code the tables into the scanner

– Common tools: lex/flex and similar

● Hand-coded

– Better I/O handling

– Easier interfacing w/ other phases



  

Handling Keywords

● Embed into NFA/DFA

– Easier/faster for generated scanners

● Use lookup table

– Easier for hand-coded scanners


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

