

CS 480
Fall 2015

Mike Lam, Professor

Regular Expressions
and

Finite Automata

a|(bc)*

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Lexical Analysis

● Lexemes or tokens: the smallest building blocks of a
language's syntax

● Lexing or scanning: the process of separating a
character stream into tokens

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

char *str = "hi";

char keyword
* star_op
str identifier
= equals_op
"hi" str_literal
; semicolon

Discussion question

● What is a language?

Language

● A language is a (potentially infinite) set of
strings over a finite alphabet

Discussion question

● How do we describe languages?

Language description

● Ways to describe languages

– Ad-hoc prose

– Formal regular expressions (current focus)

– Formal grammars

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for compilers

● Alphabet:

– Σ = { set of all characters }

● Language:

– L = { set of sequences of characters from Σ }

Regular expressions

● Describe regular languages
● Can be thought of as generalized search patterns

● Three basic operations
– Alternation: a|b

– Concatenation: ab

– ("Kleene") Closure: a*b

● Extended constructs
– Character sets: [a-z] or [0-9]

– Grouping: (a|b)c

– Positive closure: a+b
● a+ == aa*

Discussion question

● How would you implement regular expressions?

– Given a regular expression and a string, how would
you tell whether the string belongs to the language
described by the regular expression?

Lexical Analysis

● Performed automatically by state machines (finite state automata)
– Set of states with a single start state

– Transitions between states on inputs (+ implicit dead states)

– Some states are final or accepting

● Deterministic vs. non-deterministic
– Non-deterministic: multiple possible states for given sentence

– One edge from each state per character (deterministic)

– Multiple edges from each state per character (non-deterministic)

– Empty or ε-transitions (non-deterministic)

a

Regex: a

Deterministic finite automata

● Formal definition

– S: set of states

– Σ: alphabet (set of characters)

– δ: transition function: (Q, Σ) → Q

– s0: start state

– SA: accepting/final states

● Acceptance algorithm

– s := s0

– for each input c:

– s := δ(s,c)

– return (s ∈ SA)

Non-deterministic finite automata

● Formal definition

– DFA w/ multiple paths and ε-transitions

– δ: (Q, (Σ ∪ {ε})) -> [Q]

– ε-closure(s): all states reachable from s via ε-transitions

● Acceptance algorithm

– S := ε-closure(s0)

– for each input c:

– T := {}

– for each s in S:

– T := T ∪ ε-closure(δ(s,c))

– S = T

– return |S ∩ SA| > 0

Lexical Analysis

● Examples:

a

b

a b

a

a|b

a

b

ab

Lexical Analysis

● Examples:

a

b

ab

a b

a*

a

a(bc|c*)

aa*|b

a|b

ab*

a

b

Lexical Analysis

● Examples:

a

b

ab

a b

a*

a

a b
a(bc|c*)

c

c

c

a

b

aa*|b

a

a|b

ab*

a

b

Equivalence

● Regular expressions, NFAs, and DFAs all
describe the same set of languages

– "Regular languages" from Chomsky hierarchy

● Next week, we will learn how to convert
between them

Activity

● Construct state machines for the following
regular expressions:

(a|b|c)(ab|bc)x*yz* 1(1|0)* 1(10)*

(dd*.d*)|(d*.dd*) ← ε-transitions may make this one slightly easier

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

