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Synchronization and Consistency

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters 6, 7 and 11)

Various online sources



  

Synchronization

● In a shared-memory system:

– Core mechanism: mutual exclusion

– Conditions, semaphores, and barriers

● In a distributed-memory system:

– Core mechanism: message passing

– Coordinated clocks
● Absolute vs. logical

– Election and consensus algorithms

– Consistency models and protocols



  

Clocks / Timers

● Measuring time

– Movements of sun, moon, and stars

– Unwinding of wound spring

– Quartz crystal oscillating under tension

– Energy transitions of a caesium 133 atom

● Synchronizing absolute clocks

– Calendars and leap year/second adjustments

● Coordinated Universal Time (UTC)
– Clock skew

● Network Time Protocol (NTP)



  

Network Time Protocol

● Reference clocks (hardware-based)

● Stratums 1-15 and 16 (unsynced)

● 64-bit time values (<1 ns resolution)

Time offset:

Round-trip delay:

from https://en.wikipedia.org/wiki/Network_Time_Protocol



  

Logical clocks

● Lamport clocks / timestamps
– Invented by Leslie Lamport in 1978
– Core notion: "happens-before" (total ordering)

● Assigns clock value C(x) to any event x
● Increment local clock before sending
● Include local clock when sending

– Adjust local clock after communications
● Must preserve “happens-before” ordering
● Always forwards—never backwards!

– If a happened before b, then C(a) < C(b)
● Converse is not necessarily true!
● Does not capture any notion of causality

For more info:
http://dl.acm.org/citation.cfm?id=359563
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Vector clocks

● Vector clocks restore a notion of causality (partial ordering)

– Keep a vector of clock values instead of only one

– VC
i
 is the logical clock at process P

i

– VC
i
[j] = k means that P

i
 knows that k events have occurred at P

j
 (i.e., P

i
's 

knowledge of P
j
's local time), any of which could have causality influence

from https://en.wikipedia.org/wiki/Vector_clock



  

Distributed mutual exclusion

● Clocks provide time-based synchronization
● What about task-based synchronization?
● How can we implement mutual exclusion in a 

distributed system?



  

Distributed mutual exclusion

● Token-based (often used in ring networks)
● Simple; slow; susceptible to lost tokens

● Permission-based
– Centralized (single coordinator)

● Easy to implement; single bottleneck and point of failure

– Decentralized (multiple coordinators, need majority vote)
● More resilient; can be slow; possibility of starvation

 

 



  

Election algorithms

● If a coordinator is needed, there are various election 
strategies available to choose one

● Bully algorithm

– Always defer to higher-numbered nodes

● Ring algorithm

– Enforce one-way election traffic

● Wireless algorithms

– Choose the best coordinator (e.g., CPU speed, battery life, etc.)



  

Distributed consensus

● Elections (and related auctions) are a specialized form of the 
general problem of determining consensus in a distributed system

● Paxos protocol: two-phase rounds
– Prepare / promise: A proposer creates a proposal with value N larger 

than any value it has previously used and sends it to a quorum of 
acceptors, who respond with a promise to ignore future proposals with a 
value less than N

– Accept / accepted: If a proposer receives enough promises, it sets a final 
value M for its proposal and sends it to a quorum of acceptors, who 
accept it if M is greater than any other proposals it has promised to

– Real protocol has multiple ways to handle failures and lack of consensus

  Client   Proposer     Acceptors
1   |         |          |  |  |
2   X-------->|          |  |  |    Request
3   |         X--------->|->|->|    Prepare(N)
4   |         |<---------X--X--X    Promise(N)
5   |         X--------->|->|->|    Accept(M)
6   |         |<---------X--X--X    Accepted(M)
7   |<--------X          |  |  |    Response



  

Distributed consensus

Idle
Proposer

send [Prepare] (n) [Request]

[Promise] (n/2+1)

Client

send [Request]

Acceptor

send [Promise]

[Event
Detected]

[Response]

WinningProposer

send [Accept] (n) [Accept]
/ send [Accepted]

[Prepare]

1

2 3

[Accepted] (n/2+1)
/ send [Response]

4

6

5
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  Client   Proposer     Acceptors
1   |         |          |  |  |
2   X-------->|          |  |  |    Request
3   |         X--------->|->|->|    Prepare(N)
4   |         |<---------X--X--X    Promise(N)
5   |         X--------->|->|->|    Accept(M)
6   |         |<---------X--X--X    Accepted(M)
7   |<--------X          |  |  |    Response



  

Replication

● All of these protocols require a lot of communication
– Communication is expensive!

● Alternative: keep redundant data
– Replica: a copy of data

● In a distributed system, every process could have a replica

– Goal: improved availability/locality and therefore 
performance

● Related concepts: mirroring and caching
● Relieve single-node access bottlenecks



  

Replicas

● Server-initiated (e.g., mirroring)

– Updates are pushed to other replicas

● Client-initiated (e.g., caching)

– Updates are pulled from other replicas

– Write-through vs. write-back

● Peer-to-peer

– Nodes have symmetric roles

– Requires well-defined protocol for enforcing consistency

● Issue: keeping replicas consistent

– Propagating updates

– Events (reads/writes) will arrive at different times

– But maybe we’re ok with some inconsistency



  

Replication and consistency

● Theme: loosen consistency constraints to 
decrease communication overhead
– Tradeoff: performance vs. consistency



  

Replication and consistency

● CS 374 pop quiz: What does ACID stand for in 
the context of database consistency?
– A. Accessible, Continuous, Integral Data
– B. Atomic, Consistent, Isolated, Durable
– C. Atomic, Constant, Integrated, Data-agnostic
– D. Agnostic, Continuous, Isolated, Durable
– E. Accessible, Consistent, Integrated Database



  

Replication and consistency

● Theme: loosen consistency constraints to 
decrease communication overhead
– Tradeoff: performance vs. consistency

Traditional databases:
ACID - Atomic, Consistent, Isolated, Durable

Distributed systems:
BASE - Basically Available, Soft-state, Eventually consistent



  

Replication

● Consistency model: contract between entities and data stores

– If the entities follow the rules, the data store will be consistent

● Data-centric models (global view)

– Strict / continuous consistency (absolute time)

– Sequential consistency (logical time)

– Causal consistency (logical causality)

● Client-centric models (local view)

– Monotonic reads

– Monotonic writes

– Read-your-writes

– Writes-follow-reads



  

Strict / continuous consistency

● All events are seen “instantaneously” by all nodes
– Issue: speed of light (~3 x 108 m/s) prevents 

instantaneous updates, especially in large-scale 
distributed systems

– To be practical, designate an interval of allowable 
deviation

c · d

speed
of light

distance 
traveled

1ms 1s 1min 24hr

(not to scale)

interval



  

Sequential consistency

● Every node sees events in the same order

– Events must have a total order (i.e., they must be linearizable)

– Important: a particular node need not see ALL events
● But the order of the ones it sees must not violate the total order

– Notation: "W(x)a" means "write value a to item x"
● (corresponding notation for reads)

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)b   R(x)a

Sequentially-consistent

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)a   R(x)b

NOT sequentially-consistent



  

Causal consistency

● Causally-related events must be seen in order

– Reads are causally-related to corresponding writes

– Writes are causally-related to previous operations on the same node

– Can be implemented using vector clocks

– To verify, build global causality chain and check each process’s view

P0:    W(x)a
P1:                        W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

Causally-consistent

P0:    W(x)a
P1:              R(x)a  W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

NOT causally-consistent

W(x)a R(x)a

W(x)b R(x)b

W(x)a R(x)a

W(x)b R(x)b



  

Partial vs. total ordering

● Ordering: definition of “<” operator
– Usually over pairs of entities (for us, messages)

– Total ordering: definition of “<” for all pairs (w/ transitivity)
● Depicted graphically using a line

– Partial ordering: definition of “<” for some pairs (also w/ transitivity)
● Depicted graphically using a graph or lattice

P0 P1 P2 P3

A

B

C D

E

F C

D

E

FA

B

“<” ≡ “happens-before” (partial ordering)

“<” ≡ “less-than”
(total ordering)

1    2   3   4    5   6   7



  

Implication

● Sequential consistency implies causal consistency
– There is no way for the partial ordering of causal consistency 

to contradict the total ordering implied by sequential 
consistency

● Both properties (writes before reads on same data & strict 
ordering for events on single processes) used to build the partial 
ordering are already enforced by any valid total ordering

– Thus, every sequentially-consistent sequence must also be 
causally-consistent

– Colloquially: causal consistency is looser than sequential 
consistency



  

Client-centric consistency

● Previous models focused on a global view of data
– Sometimes called data-centric consistency models

● In a distributed system, we may only be interested 
in the local view at any given node
– This motivates client-centric consistency models



  

Client-centric consistency

● Original application: Bayou database system for mobile computing
– Developed in mid-1990s

– Massive number of replicas

– Multiple networks and unreliable connectivity

– Data-centric, global consistency models are infeasible

– Theme: loosen the constraints!

– Four different consistency models (not mutually exclusive)

For more info:
http://dl.acm.org/citation.cfm?id=504497



  

Monotonic reads / writes

● Monotonic reads: if a process reads X, any successive 
read to X will see the same value or a more recent one
– I.e., the process will never see an older version
– E.g., distributed email database (messages shouldn’t 

disappear when viewing a thread on the same client)

● Monotonic writes: if a process writes X, any 
successive write to X will see the effect of the first write
– I.e., newer writes must wait for older ones to finish
– E.g., local wiki edits (should never edit an older version than 

the most recent the client has) – may still introduce merge 
conflicts with respect to other clients’ changes!



  

Read-your-writes / Writes-follow-reads

● Read-your-writes: if a process writes X, any successive read 
to X will see the effect of the write
– I.e., reads will never see old versions
– Closely related to monotonic reads
– Systems that often temporarily lack this consistency:

● Retrieving websites
● Updating passwords

● Writes-follow-reads: if a process reads X, any successive 
write to X will see the same value or a more recent one 
– I.e., writes will never see old versions
– E.g., posts to an email list



  

Consistency protocols

● Continuous consistency protocols

– Bounding numerical deviation (# of updates)

– Bounding staleness deviation (time of updates)

● Primary-based protocols

– Primary: one replica that coordinates all writes for a data item

– Remote-write: forward all writes to primary (similar to write-through)

– Local-write: periodic updates sent to primary (similar to write-back)

● Replicated-write protocols

– Active replication: multicast updates to all replicas
● Need a reliable and efficient multicast protocol

– Quorum-based voting: replicas vote on updates to replicas
● Need a distributed voting/consensus protocol



  

Distributed version control
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