

CS 470
Spring 2025

Mike Lam, Professor

GPU Programming
(mainly w/ CUDA)

NVIDIA Quadro P1000

A brief digression into gaming

● 1970s: arcades began using specialized graphics chips
● 1980s: increasingly sophisticated capabilities

– E.g., sprites, blitters, and scrolling

● Early-mid 1990s: first 3D consoles and 3D accelerators for PCs
– E.g., Nintendo 64 and Voodoo graphics cards

● Late 1990s: “classic” graphics wars begin
– Nvidia vs. ATI and DirectX vs. OpenGL

● Early 2000s: new "shaders" enable easier non-graphical use of accelerators

Bringing it back

● Late 2000s and early 2010s: rise of General-Purpose GPU (GPGPU) frameworks
– 2007: Compute Unified Device Architecture (CUDA) released (newer library: Thrust)

– 2009: OpenCL standard released

– 2011: OpenACC standard released

– 2013: OpenMP 4.0 standard added target directive

● Enhanced w/ 4.5 standard in 2015

● Heterogenous computing
– Manycore CPUs and GPUs in the same system (hybrid clusters)

– Field-Programmable Gate Arrays (FPGAs) for general/reconfigurable applications

– Digital Signal Processors (DSPs) for specialized purposes

GPU Programming

● "Kernels" or "shaders" run on many logical threads grouped into blocks

– Blocks are assigned to a streaming multiprocessor (SM) w/ many individual cores

– Threads are run in warps w/ access to shared memory within the block

– Limited, low-power instruction set that operates primarily on vector data

– Must copy data back and forth between host and device memory

Images from IPP2e

Terminology note

● Single Instruction, Multiple Thread (SIMT)
– Differs from SIMD in that threads may not always

execute simultaneously on the SM
– Some threads may block for I/O while others execute

CUDA

● CUDA: NVIDIA’s GPU computation API for C++

– Compile .cu source files with NVIDIA compiler (nvcc)

– CUDA Programming Guide provided online

● Many-way parallelism

– Write a kernel routine to be run on each thread (like Pthreads)

● __global__ routines are called on host and executed on the device

– Must manually split up work among threads (arranged in a grid of blocks)

● Common approach: grid-stride loop

– Call kernel: kernel_func<<<numBlocks, blockSize>>>()

– Kernels are asynchronous by default

● Permits simultaneous computation on CPU and GPU

● Call cudaDeviceSynchronize() to wait for a kernel to finish

https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html

Hello world in CUDA
__global__
void hello()
{
 printf("Hello from thread %d in block %d\n",
 threadIdx.x, blockIdx.x);
}

int main(int argc, char* argv[])
{
 // parse command-line parameters
 int nblocks = strtol(argv[1], NULL, 10);
 int nthreads = strtol(argv[2], NULL, 10);

 // launch kernel on GPU
 hello<<<nblocks, nthreads/nblocks>>>();

 // wait for GPU to finish
 cudaDeviceSynchronize();

 return EXIT_SUCCESS;
}

CUDA

● A warp is a set of CUDA threads w/ consecutive ranks

– Fixed size (32 at the moment)
● Index of a thread inside a warp is called its lane

– In general, warps behave in a SIMD fashion

– If the control paths diverge, performance will suffer
● (E.g., threads take different branches of an if/else)

● CUDA provides some atomic operations

– E.g., atomicAdd() or atomicMax()

– Full list in CUDA programming guide

● “Fast barrier” in CUDA: __syncthreads()

– Causes all threads in a block to sync up

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

CUDA

● Device runs many threads in blocks

– Each block is scheduled to a streaming multiprocessor (SM)
● An SM might be responsible for multiple blocks

– Block size should be a multiple of the warp size
● (probably the maximum allowed)

– Number of blocks should be related to number of SMs
● Could also be a function of the total data size divided by the block size

NVIDIA A2

 Maximum global memory: 16G
 Maximum shared memory per block: 48K
 Maximum block size: 1024 x 1024 x 64
 Warp size: 32
 Number of cores: 1280 (10 SMs, 128 CUDA cores/SM)

CUDA

● Traditional (manual) model: host vs. device memory

– Local variables marked with annotations
● __device__ variables in GPU global memory, accessible by all threads

● __shared__ variables in GPU shared memory, accessible by threads in the
same block

– cudaMalloc to allocate large regions of device memory

● cudaMemcpy to copy memory to or from the device

– “kind” parameter: cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost

● cudaFree to deallocate device memory

● Newer (automatic) model: unified memory

– Movement handled by CUDA

– Call cudaMallocManaged() to allocate unified memory

– __managed__ variables accessible on both host and device

CUDA

● Grid-stride access in kernel loops generalizes to any data size

– Threads skip numBlocks * blockSize each iteration

– Essentially performs a cyclic data “distribution”

From https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA example (serial version)

void add(int n, float *x, float *y)

{

 for (int i = 0; i < n; i++) {

 y[i] = x[i] + y[i];

 }

}

int main(void)

{

 int N = 1<<20;

 float *x, *y;

 x = (float*)malloc(N*sizeof(float));

 y = (float*)malloc(N*sizeof(float));

 // initialize x and y arrays on the host

 for (int i = 0; i < N; i++) {

 x[i] = 1.0f;

 y[i] = 2.0f;

 }

 // run add routine

 add(N, x, y);

 // check for errors (all values should be 3.0f)

 float maxError = 0.0f;

 for (int i = 0; i < N; i++) {

 maxError = fmax(maxError, fabs(y[i]-3.0f));

 }

 printf("Max error: %f\n", maxError);

 // free memory

 free(x);

 free(y);

 return 0;

}

From https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA example

__global__

void add(int n, float *x, float *y)

{

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 int stride = blockDim.x * gridDim.x;

 for (int i = index; i < n; i += stride) {

 y[i] = x[i] + y[i];

 }

}

int main(void)

{

 int N = 1<<20;

 // unified memory – accessible from CPU or GPU

 float *x, *y;

 cudaMallocManaged(&x, N*sizeof(float));

 cudaMallocManaged(&y, N*sizeof(float));

 // initialize x and y arrays on the host

 for (int i = 0; i < N; i++) {

 x[i] = 1.0f;

 y[i] = 2.0f;

 }

 // run kernel on the GPU

 int blockSize = 256;

 int blockCount = (N+blockSize-1) / blockSize;

 add<<<blockCount, blockSize>>>(N, x, y);

 // wait for GPU to finish

 cudaDeviceSynchronize();

 // check for errors (all values should be 3.0f)

 float maxError = 0.0f;

 for (int i = 0; i < N; i++) {

 maxError = fmax(maxError, fabs(y[i]-3.0f));

 }

 printf("Max error: %f\n", maxError);

 // free memory

 cudaFree(x);

 cudaFree(y);

 return 0;

}

From https://devblogs.nvidia.com/even-easier-introduction-cuda/

GPU Programming (CUDA)

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}

// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device

 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);

 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 // Print results and cleanup
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 free(a_h); cudaFree(a_d);
}

Micromanaged
memory usage and
data movement

GPU Programming (OpenACC)

#pragma acc data copy(A) create(Anew)
while (error > tol && iter < iter_max) {
 error = 0.0;

 #pragma acc kernels
 {
 #pragma acc loop
 for (int j = 1; j < n-1; j++) {
 for (int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i];
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }

 #pragma acc loop
 for (int j = 1; j < n-1; j++) {
 for (int = i; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 }

 if (iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
 iter++;
}

Fewer modifications
required; may not
parallelize effectively

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

