

CS 470
Spring 2025

Mike Lam, Professor

OpenMP

OpenMP

● Programming language extension

– Compiler support required

– "Open Multi-Processing"

– Open standard: latest version is 5.1 (released Nov 2020)

– Managed by a consortium: openmp.org

● “Automatic” thread-level parallelism

– Guided by programmer-supplied directives (pragmas)

– Does NOT verify correctness of parallel transformations

– Targets shared-memory systems

– Used in distributed systems for on-node parallelism

https://www.openmp.org/

Technology comparison

● Cilk / Cilk Plus / Open Cilk

– Language extension - new keywords: spawn, sync, cilk_for

– Purchased by Intel in 2009; lost support in 2017; now maintained by MIT

● Intel Thread Building Blocks (TBB)

– Template library (C++ only)

– Gaining popularity, but fairly complicated to use

● OpenMP

– Directive-based; supported by most major compilers

– Currently the most popular CPU-based technology

● OpenACC

– Directive-based; similar to OpenMP

– Primarily aimed at GPU parallelism (driven by NVIDIA)

Fork-join threading

● OpenMP provides directives to control threading

– General fork-join threading model w/ teams of threads

– One main (or “master”) thread and multiple worker threads

Source: https://en.wikipedia.org/wiki/Fork–join_model

Main thread

Main thread

C preprocessor (261 review)

● Text-based processing phase of compilation

– Can be run individually with “cpp”

– Performs textual modifications on program code

#define MAX_LEN 128

char name[MAX_LEN];
snprintf(name, MAX_LEN, “%s”, argv[1]);

char name[128];
snprintf(name, 128, “%s”, argv[1]);

Before After

C preprocessor (261 review)

● Controlled by directives on lines beginning with “#”

– Must be the first non-whitespace character

– Alignment is a matter of personal style

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
ifdef FOO
 printf("Hello!\n");
else
 printf("Goodbye!\n");
endif
 printf("%d\n", BAR);
 return 0;
}

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
 #ifdef FOO
 printf("Hello!\n");
 #else
 printf("Goodbye!\n");
 #endif
 printf("%d\n", BAR);
 return 0;
}

my preference

Pragmas

● #pragma - generic preprocessor directive

– Provides direction or info to later compiler phases

– Ignored by compilers that don't support it

– All OpenMP pragma directives begin with "omp"

– Basic threading directive: "parallel"
● Runs the following code construct in fork/join parallel threads
● Implicit barrier at end of construct

#pragma play(global_thermonuclear_war)
do_something();

#pragma omp parallel
do_something_else();

Compiling and running w/ OpenMP

● Must #include <omp.h>

● Must compile with "-fopenmp" flag

gcc -g -std=c99 -Wall -fopenmp -o omp omp.c

srun ./omp

● Use OMP_NUM_THREADS environment variable to set thread count

– Default value is core count (w/ hyper-threads)

OMP_NUM_THREADS=4 srun ./omp

"Hello World" example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char *argv[])
{

pragma omp parallel
 printf("Hello!\n");

 printf("Goodbye!\n");

 return EXIT_SUCCESS;
}

Mutual exclusion

● Use "critical" directive to enforce mutual exclusion
– Only one thread at a time can execute the following

construct
– A critical section can optionally be named

● Sections that share a name share exclusivity
● CAUTION: all unnamed sections “share” a name!

pragma omp critical

 global_result += my_result ;

(gres)

Pragma scope

● Most OpenMP pragmas apply to the immediately-
following statement or block
– Not necessarily just the next line!

pragma omp parallel

 printf("hello!\n");

pragma omp parallel

 {

 int a = 0;

 ...

 global_var += a;

 }

pragma omp parallel

 total += a * b + c;

pragma omp parallel

 for (i = 0; i < n; i++) {

 sum += i;

 }

Warning: different semantics from
#pragma omp parallel for

Functions

● Built-in functions:
– omp_get_num_threads()

● Returns the number of threads in the current team

– omp_get_max_threads()
● Returns the maximum number of threads in a team
● Can be used outside a parallel region

– omp_get_thread_num()
● Returns the caller's thread ID within the current team

– omp_get_wtime()
● Returns the elapsed wall time in seconds

Trapezoid example (from textbook)

Is this task or data

parallelism?

What problem(s)

might we run into?

Trapezoid example (from textbook)

● Solution: (w/ some non-OMP code omitted for brevity)
int main() {
 double global_result = 0.0;

pragma omp parallel
 trapezoid(&global_result);

 printf(“Estimated area: %.14e\n”, global_result);
}

void trapezoid(double* global_result) {
 double my_result;

 int my_tid = omp_get_thread_num();
 int num_threads = omp_get_num_threads()
 // calculate my_result based on my_tid and num_threads

pragma omp critical
 *global_result += my_result;
}

Incremental parallelization

● Pragmas allow incremental parallelization

– Gradually add parallel constructs

– OpenMP programs can be correct serial programs when compiled
without "-fopenmp"

● Silence the pragma warnings with “-Wno-unknown-pragmas”

● Still need to guard the #include and function calls

– Use "_OPENMP" preprocessor variable to test

● If defined, it is safe to call OpenMP functions

#ifdef _OPENMP

#include <omp.h>

#endif

ifdef _OPENMP

 int my_rank = omp_get_thread_num();

 int thread_count = omp_get_num_threads();

else

 int my_rank = 0;

 int thread_count = 1;

endif

Barriers

● Explicit barrier: "barrier" directive
– All threads must sync

pragma omp barrier

Clauses

● Directives can be modified by clauses
– Text that follows the directive

– Some clauses take parameters

– E.g., "num_threads"

pragma omp parallel num_threads(thread_count)

WARNING: Only use the “num_threads” clause if you wish to hard-code
the number of threads (this is not considered best practice for OpenMP!)

Single-thread regions

● Implicit barrier: "single" directive

– Only one thread executes the following construct
● Could be any thread; don’t assume it’s the first/main thread
● For main-thread-only, use “master” directive

– All threads must sync at end of directive
● Use “nowait” clause to prevent this implicit barrier

pragma omp single

 global_result /= 2;

pragma omp single nowait

 global_iter_count++;

Reductions

● The reduction(op:var) clause applies an operator to
a sequence of operands to get a single result
– Designates a shared-memory reduction variable (var)
– OpenMP manages per-thread intermediate results
– OpenMP handles synchronization (w/ implicit mutex) and

stores final results in the reduction variable
– Supported operations (op): +, -, *, &, |, ^, &&, ||, min, max

 double foo = 0.0;

pragma omp parallel reduction(+:foo)

 foo += (do_calc() * PI)/2.0;

Scope of variables

● In OpenMP, each variable has a thread "scope"
– Shared scope: accessible by all threads in team

● Default for variables declared before a parallel block

– Private scope: accessible by only a single thread
● Default for variables declared inside a parallel block

 double foo = 0.0; // shared

pragma omp parallel

 {

 double bar = do_calc() * PI; // private

pragma omp critical

 foo = foo + bar/2.0;

 }

Default scoping

● The "default" clause changes the default scope for
variables declared outside the parallel block

– default(none) mandates explicit scope declaration

● Use "shared", “reduction”, and "private" clauses
● Compiler will check that you declared all variables
● This is good programming practice and required in CS 470

Private variable nuances

● Sometimes it is useful to have a variable that is neither completely
shared nor completely private

● Use firstprivate to initialize with the value before parallel region

– Useful if all threads need to start with the same value but later diverge

● Use lastprivate to save last value after parallel region

int i;
#pragma omp parallel
{
pragma omp for lastprivate(i)
 for (i = 0; i < n-1; i++)
 a[i] = b[i] + b[i+1];
}
a[i] = b[i];

Parallel for loops

● The "parallel for" directive parallelizes a loop

– Probably the most powerful and most-used directive

– Divides loop iterations among a team of threads

– CAVEAT: the for-loop must have a very particular form

Parallel for loops

● The compiler must be able to determine the number of
iterations prior to the execution of the loop

● Implications/restrictions:

– The number of iterations must be finite (no "for (;;)")

– The break statement cannot be used (although exit() is ok)

– The index variable must have an integer or pointer type

– The index variable must only be modified by the "increment" part of
the loop declaration

– The index, start, end, and incr expressions/variables must all
have compatible types

– The start, end, and incr expressions must not change during
execution of the loop

Issue: correctness

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes we

get this (w/ 2 threads)

fib[0] = fib[1] = 1;

for (i = 2; i < n; i++)

 fib[i] = fib[i-1] + fib[i-2];

 fib[0] = fib[1] = 1;

pragma omp parallel for

 for (i = 2; i < n; i++)

 fib[i] = fib[i-1] + fib[i-2];

Loop dependencies

● A loop has a data dependence if one iteration
depends on another iteration
– Explicitly (as in Fibonacci example) or implicitly

– Includes side effects!

– Sometimes called loop-carried dependence

● A loop with dependencies cannot (usually) be
parallelized correctly by OpenMP
– Identifying dependencies is very important!

– OpenMP does not check for them

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
 a[i] = b[i] * c[i];
}

for (i = 0; i < n; i++) {
 a[i] += b[i]
}

for (i = 0; i < n; i++) {
 a[i] += a[i]
}

for (i = 1; i < n; i++) {
 a[i] += a[i-1]
}

for (i = 1; i < n; i += 2) {
 a[i] += a[i-1]
}

for (i = 1; i < n; i++) {
 a[i] += b[i-1]
}

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
 a[i] = b[i] * c[i];
}
 OK!

for (i = 0; i < n; i++) {
 a[i] += b[i]
}
 OK!

for (i = 0; i < n; i++) {
 a[i] += a[i]
}
 OK!

for (i = 1; i < n; i++) {
 a[i] += a[i-1]
}
 BAD! (iteration i depends on i-1)

for (i = 1; i < n; i += 2) {
 a[i] += a[i-1]
}
 OK!

for (i = 1; i < n; i++) {
 a[i] += b[i-1]
}
 OK!

Loop scheduling

● Use the schedule clause to control how parallel for-loop
iterations are allocated to threads
– Modified by chunksize parameter

– static: split into chunks before loop is executed

– dynamic: split into chunks, dynamically allocated to threads
(similar to thread pool or tasks)

– guided: like dynamic, but chunk sizes decrease
● The specified chunksize is the minimum

– auto: allows the compiler or runtime to choose

– runtime: allows specification using OMP_SCHEDULE

Loop scheduling

Image from http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

Loop scheduling
(static)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 0
Iteration 03 on thread 0
Iteration 04 on thread 0
Iteration 05 on thread 0
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 1
Iteration 09 on thread 1
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 1
Iteration 13 on thread 1
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 2
Iteration 19 on thread 2
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 2
Iteration 23 on thread 2
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 3
Iteration 27 on thread 3
Iteration 28 on thread 3
Iteration 29 on thread 3
Iteration 30 on thread 3
Iteration 31 on thread 3

(static, 1)

Iteration 00 on thread 0
Iteration 01 on thread 1
Iteration 02 on thread 2
Iteration 03 on thread 3
Iteration 04 on thread 0
Iteration 05 on thread 1
Iteration 06 on thread 2
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 1
Iteration 10 on thread 2
Iteration 11 on thread 3
Iteration 12 on thread 0
Iteration 13 on thread 1
Iteration 14 on thread 2
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 1
Iteration 18 on thread 2
Iteration 19 on thread 3
Iteration 20 on thread 0
Iteration 21 on thread 1
Iteration 22 on thread 2
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 1
Iteration 26 on thread 2
Iteration 27 on thread 3
Iteration 28 on thread 0
Iteration 29 on thread 1
Iteration 30 on thread 2
Iteration 31 on thread 3

(static, 2)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 1
Iteration 03 on thread 1
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 3
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 2
Iteration 13 on thread 2
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 0
Iteration 18 on thread 1
Iteration 19 on thread 1
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 3
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 0
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 2
Iteration 29 on thread 2
Iteration 30 on thread 3
Iteration 31 on thread 3

(dynamic, 2)

Iteration 00 on thread 1
Iteration 01 on thread 1
Iteration 02 on thread 3
Iteration 03 on thread 3
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 3
Iteration 09 on thread 3
Iteration 10 on thread 3
Iteration 11 on thread 3
Iteration 12 on thread 3
Iteration 13 on thread 3
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 3
Iteration 19 on thread 3
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 1
Iteration 23 on thread 1
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 1
Iteration 29 on thread 1
Iteration 30 on thread 0
Iteration 31 on thread 0

(guided)

Iteration 00 on thread 2
Iteration 01 on thread 2
Iteration 02 on thread 2
Iteration 03 on thread 2
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 2
Iteration 07 on thread 2
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 0
Iteration 11 on thread 0
Iteration 12 on thread 0
Iteration 13 on thread 0
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 1
Iteration 17 on thread 1
Iteration 18 on thread 1
Iteration 19 on thread 3
Iteration 20 on thread 3
Iteration 21 on thread 3
Iteration 22 on thread 3
Iteration 23 on thread 2
Iteration 24 on thread 2
Iteration 25 on thread 2
Iteration 26 on thread 2
Iteration 27 on thread 2
Iteration 28 on thread 2
Iteration 29 on thread 1
Iteration 30 on thread 1
Iteration 31 on thread 3

Parallel regions

● Often useful: multiple for-loops inside a parallel region

– Many pragmas bind dynamically to any active parallel region

– Less thread creation/joining overhead

– Private variables can be re-used across multiple loops

pragma omp parallel
 {
pragma omp for
 for (int i = 0; i < n; i++) {
 do_something_parallel();
 }

pragma omp single
 do_something_serial();

pragma omp for
 for (int j = 0; j < m; j++) {
 do_something_else_parallel();
 }
 }

pragma omp parallel for
 for (int i = 0; i < n; i++) {
 do_something_parallel();
 }

 do_something_serial();

pragma omp parallel for
 for (int j = 0; j < m; j++) {
 do_something_else_parallel();
 }

Original Faster

Nested loops

● The parallel for loop only applies to the loop layer that you specify

– For nested loops, use the collapse clause to combine iteration spaces

– Spaces must be “square”

● i.e., inner loop iteration count should not depend on outer loop value

● Project note: this is NOT the case for many loops in P3!

#pragma omp parallel for collapse(2)

for (i = 0; i < n; i++) { // row
 for (j = 0; j < n; j++) { // column
 a[i*n + j] = 1.0;
 }
}

Atomics

● OpenMP provides access to highly-efficient
hardware synchronization mechanisms
– Use the atomic pragma to annotate a single statement

– Statement must be a single increment/decrement or in the
following form:

● x <op>= <expr>; // <op> can be +, -, *, /, &, |, ^, <<, >>

– Many ISAs provide an atomic load/modify/store instruction
● In x86-64, specified using the LOCK prefix
● Far more efficient than using a mutex (i.e., critical)

– This requires multiple function calls!

Locks

● OpenMP provides a basic locking system

– Useful for protecting a data structure rather than a region of code

– omp_lock_t: lock variable

● Similar to pthread_mutex_t

– omp_lock_init: initialize lock

● Similar to pthread_mutex_init

– omp_set_lock: acquire lock

● Similar to pthread_mutex_lock

– omp_unset_lock: release lock

● Similar to pthread_mutex_unlock

– omp_lock_destroy: clean up a lock

● Similar to pthread_mutex_destroy

Thread safety

● Don't mix mutual exclusion mechanisms
– #pragma omp critical

– #pragma omp atomic

– omp_set_lock()

● Don't nest mutual exclusion mechanisms

– Nesting unnamed critical sections guarantees deadlock!
● The thread cannot enter the second section because it is still in the

first section, and unnamed sections “share” a name

– If you must, use named critical sections or nested locks

Nested locks

● Simple vs. nested locks
– omp_nest_lock_* instead of omp_lock_*

– A nested lock may be acquired multiple times
● Must be in the same thread
● Must be released the same number of times
● Allows you to write functions that call each other but need to

acquire the same lock

Sections

● OpenMP is most often used for data parallelism (parallel for)

● However, it also supports explicit task parallelism

● Pre-OpenMP 3.0 mechanism: sections directive

– Contains multiple section blocks; each section runs on separate thread

– Must list all sections in same location (cannot dynamically add new tasks)

– Implicit barrier at end (unless nowait clause is specified)

pragma omp parallel sections
 {
pragma omp section
 producer();
pragma omp section
 consumer();
 }

Tasks

● Post-OpenMP 3.0 mechanism: task directive

– Similar to thread pool task model

– Tasks are assigned to available worker threads by the runtime

● Tasks may be deferred if no workers available

– No implicit barrier; use taskwait directive if needed

– Use single region if only one thread should begin (e.g., recursion)

● Use nowait clause to allow other threads to run tasks

main:
pragma omp parallel
pragma omp single nowait

quick_sort(items, n);

quicksort:
 <select pivot and partition>

 // recursively sort each partition
pragma omp task
 quick_sort(items, p+1);
pragma omp task
 quick_sort(items+q, n-q);
pragma omp taskwait

SIMD support

● Post-OpenMP 4.0 mechanism: simd directive

– Enables generation of vector instructions (e.g., SSE or AVX)

– Can encode some loop-carried dependencies using safelen(X)
directive

#pragma omp simd
{
 for (i=0; i<N; i++) {
 a[i] = a[i] + b[i] * c[i];
 }
}

#pragma omp simd safelen(4)
{
 for (i=0; i<(N-4); i++) {
 a[i] = a[i+4] + b[i] * c[i];
 }
}

GPU support

● Post-OpenMP 4.0/4.5 mechanism: target directive
– Offloads computation to a device (e.g., GPU)
– Data management using map directive with from and to

clauses

void vec_mult(int N)
{
 int i;
 float p[N], v1[N], v2[N];
 init(v1, v2, N);
pragma omp target map(to: v1, v2) map(from: p)
pragma omp parallel for
 for (i=0; i<N; i++) {
 p[i] = v1[i] * v2[i];
 }
 output(p, N);
}

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

More OpenMP examples

● Posted in /shared/cs470
– Basic for-loop example (omp-array)

– For-loop scheduling (omp-sched)

– Critical sections and deadlock (omp-deadlock)

– The ‘atomic’ directive (omp-atomic)

– Tasks (omp-qsort)

– Matrix multiplication (omp-matmult)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

