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OpenMP

● Programming language extension

– Compiler support required

– "Open Multi-Processing"

– Open standard: latest version is 5.1 (released Nov 2020)

– Managed by a consortium: openmp.org

● “Automatic” thread-level parallelism

– Guided by programmer-supplied directives (pragmas)

– Does NOT verify correctness of parallel transformations

– Targets shared-memory systems

– Used in distributed systems for on-node parallelism

https://www.openmp.org/


  

Technology comparison

● Cilk / Cilk Plus / Open Cilk

– Language extension - new keywords: spawn, sync, cilk_for

– Purchased by Intel in 2009; lost support in 2017; now maintained by MIT

● Intel Thread Building Blocks (TBB)

– Template library (C++ only)

– Gaining popularity, but fairly complicated to use

● OpenMP

– Directive-based; supported by most major compilers

– Currently the most popular CPU-based technology

● OpenACC

– Directive-based; similar to OpenMP

– Primarily aimed at GPU parallelism (driven by NVIDIA)



  

Fork-join threading

● OpenMP provides directives to control threading

– General fork-join threading model w/ teams of threads

– One main (or “master”) thread and multiple worker threads

Source: https://en.wikipedia.org/wiki/Fork–join_model

Main thread

Main thread



  

C preprocessor (261 review)

● Text-based processing phase of compilation

– Can be run individually with “cpp”

– Performs textual modifications on program code

#define MAX_LEN 128

char name[MAX_LEN];
snprintf(name, MAX_LEN, “%s”, argv[1]);

char name[128];
snprintf(name, 128, “%s”, argv[1]);

Before After



  

C preprocessor (261 review)

● Controlled by directives on lines beginning with “#”

– Must be the first non-whitespace character

– Alignment is a matter of personal style

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
#   ifdef FOO
    printf("Hello!\n");
#   else
    printf("Goodbye!\n");
#   endif
    printf("%d\n", BAR);
    return 0;
}

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
    #ifdef FOO
    printf("Hello!\n");
    #else
    printf("Goodbye!\n");
    #endif
    printf("%d\n", BAR);
    return 0;
}

my preference



  

Pragmas

● #pragma - generic preprocessor directive

– Provides direction or info to later compiler phases

– Ignored by compilers that don't support it

– All OpenMP pragma directives begin with "omp"

– Basic threading directive: "parallel"
● Runs the following code construct in fork/join parallel threads
● Implicit barrier at end of construct

#pragma play(global_thermonuclear_war)
do_something();

#pragma omp parallel
do_something_else();



  

Compiling and running w/ OpenMP

● Must  #include <omp.h>

● Must compile with "-fopenmp" flag

gcc -g -std=c99 -Wall -fopenmp -o omp omp.c

srun ./omp

● Use OMP_NUM_THREADS environment variable to set thread count

– Default value is core count (w/ hyper-threads)

OMP_NUM_THREADS=4 srun ./omp



  

"Hello World" example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char *argv[])
{

#   pragma omp parallel
    printf("Hello!\n");

    printf("Goodbye!\n");

    return EXIT_SUCCESS;
}



  

Mutual exclusion

● Use "critical" directive to enforce mutual exclusion
– Only one thread at a time can execute the following 

construct
– A critical section can optionally be named

● Sections that share a name share exclusivity
● CAUTION: all unnamed sections “share” a name!

#   pragma omp critical

    global_result += my_result ;

(gres)



  

Pragma scope

● Most OpenMP pragmas apply to the immediately-
following statement or block
– Not necessarily just the next line!

#   pragma omp parallel

    printf("hello!\n");

#   pragma omp parallel

    {

        int a = 0;

        ...

        global_var += a;

    }

#   pragma omp parallel

    total += a * b + c;

#   pragma omp parallel

    for (i = 0; i < n; i++) {

        sum += i;

    }

Warning: different semantics from
#pragma omp parallel for



  

Functions

● Built-in functions:
– omp_get_num_threads()

● Returns the number of threads in the current team

– omp_get_max_threads()
● Returns the maximum number of threads in a team
● Can be used outside a parallel region

– omp_get_thread_num()
● Returns the caller's thread ID within the current team

– omp_get_wtime()
● Returns the elapsed wall time in seconds



  

Trapezoid example (from textbook)

Is this task or data

parallelism?

What problem(s)

might we run into?



  

Trapezoid example (from textbook)

● Solution:    (w/ some non-OMP code omitted for brevity)
int main() {
    double global_result = 0.0;

#   pragma omp parallel
    trapezoid(&global_result);

    printf(“Estimated area: %.14e\n”, global_result);
}

void trapezoid(double* global_result) {
    double my_result;

    int my_tid = omp_get_thread_num();
    int num_threads = omp_get_num_threads()
    // calculate my_result based on my_tid and num_threads

#   pragma omp critical
    *global_result += my_result;
}



  

Incremental parallelization

● Pragmas allow incremental parallelization

– Gradually add parallel constructs

– OpenMP programs can be correct serial programs when compiled 
without "-fopenmp"

● Silence the pragma warnings with “-Wno-unknown-pragmas”

● Still need to guard the #include and function calls

– Use "_OPENMP" preprocessor variable to test

● If defined, it is safe to call OpenMP functions

#ifdef _OPENMP

#include <omp.h>

#endif

#   ifdef _OPENMP

    int my_rank = omp_get_thread_num();

    int thread_count = omp_get_num_threads();

#   else

    int my_rank = 0;

    int thread_count = 1;

#   endif



  

Barriers

● Explicit barrier: "barrier" directive
– All threads must sync

#   pragma omp barrier



  

Clauses

● Directives can be modified by clauses
– Text that follows the directive

– Some clauses take parameters

– E.g., "num_threads"

# pragma omp parallel num_threads(thread_count)

WARNING: Only use the “num_threads” clause if you wish to hard-code 
the number of threads (this is not considered best practice for OpenMP!)



  

Single-thread regions

● Implicit barrier: "single" directive

– Only one thread executes the following construct
● Could be any thread; don’t assume it’s the first/main thread
● For main-thread-only, use “master” directive

– All threads must sync at end of directive
● Use “nowait” clause to prevent this implicit barrier

#   pragma omp single

    global_result /= 2;

#   pragma omp single nowait

    global_iter_count++;



  

Reductions

● The reduction(op:var) clause applies an operator to 
a sequence of operands to get a single result
– Designates a shared-memory reduction variable (var)
– OpenMP manages per-thread intermediate results
– OpenMP handles synchronization (w/ implicit mutex) and 

stores final results in the reduction variable
– Supported operations (op): +, -, *, &, |, ^, &&, ||, min, max

    double foo = 0.0;

#   pragma omp parallel reduction(+:foo)

    foo += (do_calc() * PI)/2.0;



  

Scope of variables

● In OpenMP, each variable has a thread "scope"
– Shared scope: accessible by all threads in team

● Default for variables declared before a parallel block

– Private scope: accessible by only a single thread
● Default for variables declared inside a parallel block

    double foo = 0.0; // shared

#   pragma omp parallel

    {

        double bar = do_calc() * PI; // private

#       pragma omp critical

        foo = foo + bar/2.0;

    }



  

Default scoping

● The "default" clause changes the default scope for 
variables declared outside the parallel block

– default(none) mandates explicit scope declaration

● Use "shared", “reduction”, and "private" clauses
● Compiler will check that you declared all variables
● This is good programming practice and required in CS 470



  

Private variable nuances

● Sometimes it is useful to have a variable that is neither completely 
shared nor completely private

● Use firstprivate to initialize with the value before parallel region

– Useful if all threads need to start with the same value but later diverge

● Use lastprivate to save last value after parallel region

int i;
#pragma omp parallel
{
#   pragma omp for lastprivate(i)
    for (i = 0; i < n-1; i++)
        a[i] = b[i] + b[i+1];
}
a[i] = b[i];



  

Parallel for loops

● The "parallel for" directive parallelizes a loop

– Probably the most powerful and most-used directive

– Divides loop iterations among a team of threads

– CAVEAT: the for-loop must have a very particular form



  

Parallel for loops

● The compiler must be able to determine the number of 
iterations prior to the execution of the loop

● Implications/restrictions:

– The number of iterations must be finite (no "for (;;)")

– The break statement cannot be used (although exit() is ok)

– The index variable must have an integer or pointer type

– The index variable must only be modified by the "increment" part of 
the loop declaration

– The index, start, end, and incr expressions/variables must all 
have compatible types

– The start, end, and incr expressions must not change during 
execution of the loop



  

Issue: correctness

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes we

get this (w/ 2 threads) 

fib[0] = fib[1] = 1;

for (i = 2; i < n; i++)

     fib[i] = fib[i-1] + fib[i-2]; 

    fib[0] = fib[1] = 1;

#   pragma omp parallel for

    for (i = 2; i < n; i++)

          fib[i] = fib[i-1] + fib[i-2]; 



  

Loop dependencies

● A loop has a data dependence if one iteration 
depends on another iteration
– Explicitly (as in Fibonacci example) or implicitly

– Includes side effects!

– Sometimes called loop-carried dependence

● A loop with dependencies cannot (usually) be 
parallelized correctly by OpenMP
– Identifying dependencies is very important!

– OpenMP does not check for them



  

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
    a[i] = b[i] * c[i];
}

for (i = 0; i < n; i++) {
    a[i] += b[i]
}

for (i = 0; i < n; i++) {
    a[i] += a[i]
}

for (i = 1; i < n; i++) {
    a[i] += a[i-1]
}

for (i = 1; i < n; i += 2) {
    a[i] += a[i-1]
}

for (i = 1; i < n; i++) {
    a[i] += b[i-1]
}



  

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
    a[i] = b[i] * c[i];
}
   OK!

for (i = 0; i < n; i++) {
    a[i] += b[i]
}
   OK!

for (i = 0; i < n; i++) {
    a[i] += a[i]
}
   OK!

for (i = 1; i < n; i++) {
    a[i] += a[i-1]
}
   BAD!   (iteration i depends on i-1)

for (i = 1; i < n; i += 2) {
    a[i] += a[i-1]
}
   OK!

for (i = 1; i < n; i++) {
    a[i] += b[i-1]
}
   OK!



  

Loop scheduling

● Use the schedule clause to control how parallel for-loop 
iterations are allocated to threads
– Modified by chunksize parameter

– static: split into chunks before loop is executed

– dynamic: split into chunks, dynamically allocated to threads 
(similar to thread pool or tasks)

– guided: like dynamic, but chunk sizes decrease
● The specified chunksize is the minimum

– auto: allows the compiler or runtime to choose

– runtime: allows specification using OMP_SCHEDULE



  

Loop scheduling

Image from http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html



  

Loop scheduling
(static)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 0
Iteration 03 on thread 0
Iteration 04 on thread 0
Iteration 05 on thread 0
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 1
Iteration 09 on thread 1
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 1
Iteration 13 on thread 1
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 2
Iteration 19 on thread 2
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 2
Iteration 23 on thread 2
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 3
Iteration 27 on thread 3
Iteration 28 on thread 3
Iteration 29 on thread 3
Iteration 30 on thread 3
Iteration 31 on thread 3

(static, 1)

Iteration 00 on thread 0
Iteration 01 on thread 1
Iteration 02 on thread 2
Iteration 03 on thread 3
Iteration 04 on thread 0
Iteration 05 on thread 1
Iteration 06 on thread 2
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 1
Iteration 10 on thread 2
Iteration 11 on thread 3
Iteration 12 on thread 0
Iteration 13 on thread 1
Iteration 14 on thread 2
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 1
Iteration 18 on thread 2
Iteration 19 on thread 3
Iteration 20 on thread 0
Iteration 21 on thread 1
Iteration 22 on thread 2
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 1
Iteration 26 on thread 2
Iteration 27 on thread 3
Iteration 28 on thread 0
Iteration 29 on thread 1
Iteration 30 on thread 2
Iteration 31 on thread 3

(static, 2)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 1
Iteration 03 on thread 1
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 3
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 2
Iteration 13 on thread 2
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 0
Iteration 18 on thread 1
Iteration 19 on thread 1
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 3
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 0
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 2
Iteration 29 on thread 2
Iteration 30 on thread 3
Iteration 31 on thread 3

(dynamic, 2)

Iteration 00 on thread 1
Iteration 01 on thread 1
Iteration 02 on thread 3
Iteration 03 on thread 3
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 3
Iteration 09 on thread 3
Iteration 10 on thread 3
Iteration 11 on thread 3
Iteration 12 on thread 3
Iteration 13 on thread 3
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 3
Iteration 19 on thread 3
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 1
Iteration 23 on thread 1
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 1
Iteration 29 on thread 1
Iteration 30 on thread 0
Iteration 31 on thread 0

(guided)

Iteration 00 on thread 2
Iteration 01 on thread 2
Iteration 02 on thread 2
Iteration 03 on thread 2
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 2
Iteration 07 on thread 2
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 0
Iteration 11 on thread 0
Iteration 12 on thread 0
Iteration 13 on thread 0
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 1
Iteration 17 on thread 1
Iteration 18 on thread 1
Iteration 19 on thread 3
Iteration 20 on thread 3
Iteration 21 on thread 3
Iteration 22 on thread 3
Iteration 23 on thread 2
Iteration 24 on thread 2
Iteration 25 on thread 2
Iteration 26 on thread 2
Iteration 27 on thread 2
Iteration 28 on thread 2
Iteration 29 on thread 1
Iteration 30 on thread 1
Iteration 31 on thread 3



  

Parallel regions

● Often useful: multiple for-loops inside a parallel region

– Many pragmas bind dynamically to any active parallel region

– Less thread creation/joining overhead

– Private variables can be re-used across multiple loops

#   pragma omp parallel
    {
#       pragma omp for
        for (int i = 0; i < n; i++) {
            do_something_parallel();
        }

#       pragma omp single
        do_something_serial();

#       pragma omp for
        for (int j = 0; j < m; j++) {
            do_something_else_parallel();
        }
    }

#   pragma omp parallel for
    for (int i = 0; i < n; i++) {
        do_something_parallel();
    }

    do_something_serial();

#   pragma omp parallel for
    for (int j = 0; j < m; j++) {
        do_something_else_parallel();
    }

Original Faster



  

Nested loops

● The parallel for loop only applies to the loop layer that you specify

– For nested loops, use the collapse clause to combine iteration spaces

– Spaces must be “square”

● i.e., inner loop iteration count should not depend on outer loop value

● Project note: this is NOT the case for many loops in P3!

#pragma omp parallel for collapse(2) 

for (i = 0; i < n; i++) {      // row 
    for (j = 0; j < n; j++) {  // column
        a[i*n + j] = 1.0;
    }
}



  

Atomics

● OpenMP provides access to highly-efficient 
hardware synchronization mechanisms
– Use the atomic pragma to annotate a single statement

– Statement must be a single increment/decrement or in the 
following form:

● x <op>= <expr>;    // <op> can be +, -, *, /, &, |, ^, <<, >>

– Many ISAs provide an atomic load/modify/store instruction
● In x86-64, specified using the LOCK prefix
● Far more efficient than using a mutex (i.e., critical)

– This requires multiple function calls!



  

Locks

● OpenMP provides a basic locking system

– Useful for protecting a data structure rather than a region of code

– omp_lock_t: lock variable

● Similar to pthread_mutex_t

– omp_lock_init: initialize lock

● Similar to pthread_mutex_init

– omp_set_lock: acquire lock

● Similar to pthread_mutex_lock

– omp_unset_lock: release lock

● Similar to pthread_mutex_unlock

– omp_lock_destroy: clean up a lock

● Similar to pthread_mutex_destroy



  

Thread safety

● Don't mix mutual exclusion mechanisms
– #pragma omp critical

– #pragma omp atomic

– omp_set_lock()

● Don't nest mutual exclusion mechanisms

– Nesting unnamed critical sections guarantees deadlock!
● The thread cannot enter the second section because it is still in the 

first section, and unnamed sections “share” a name

– If you must, use named critical sections or nested locks



  

Nested locks

● Simple vs. nested locks
– omp_nest_lock_* instead of omp_lock_*

– A nested lock may be acquired multiple times
● Must be in the same thread
● Must be released the same number of times
● Allows you to write functions that call each other but need to 

acquire the same lock



  

Sections

● OpenMP is most often used for data parallelism (parallel for)

● However, it also supports explicit task parallelism

● Pre-OpenMP 3.0 mechanism: sections directive

– Contains multiple section blocks; each section runs on separate thread

– Must list all sections in same location (cannot dynamically add new tasks)

– Implicit barrier at end (unless nowait clause is specified)

#   pragma omp parallel sections
    {
#       pragma omp section
        producer();
#       pragma omp section
        consumer();
    }



  

Tasks

● Post-OpenMP 3.0 mechanism: task directive

– Similar to thread pool task model

– Tasks are assigned to available worker threads by the runtime

● Tasks may be deferred if no workers available

– No implicit barrier; use taskwait directive if needed

– Use single region if only one thread should begin (e.g., recursion)

● Use nowait clause to allow other threads to run tasks

main:
#   pragma omp parallel
#   pragma omp single nowait

quick_sort(items, n);

quicksort:
    <select pivot and partition>

    // recursively sort each partition
#   pragma omp task
    quick_sort(items, p+1);
#   pragma omp task
    quick_sort(items+q, n-q);
#   pragma omp taskwait



  

SIMD support

● Post-OpenMP 4.0 mechanism: simd directive

– Enables generation of vector instructions (e.g., SSE or AVX)

– Can encode some loop-carried dependencies using safelen(X) 
directive

#pragma omp simd
{
  for (i=0; i<N; i++) {
    a[i] = a[i] + b[i] * c[i];
  }
}

#pragma omp simd safelen(4)
{
  for (i=0; i<(N-4); i++) {
    a[i] = a[i+4] + b[i] * c[i];
  }
}



  

GPU support

● Post-OpenMP 4.0/4.5 mechanism: target directive
– Offloads computation to a device (e.g., GPU)
– Data management using map directive with from and to 

clauses

void vec_mult(int N)
{
  int i;
  float p[N], v1[N], v2[N];
  init(v1, v2, N);
# pragma omp target map(to: v1, v2) map(from: p)
# pragma omp parallel for
  for (i=0; i<N; i++) {
    p[i] = v1[i] * v2[i];
  }
  output(p, N);
}

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf



  

More OpenMP examples

● Posted in /shared/cs470
– Basic for-loop example (omp-array) 

– For-loop scheduling (omp-sched)

– Critical sections and deadlock (omp-deadlock)

– The ‘atomic’ directive (omp-atomic)

– Tasks (omp-qsort)

– Matrix multiplication (omp-matmult)
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