
  

CS 470
Spring 2025

Mike Lam, Professor

Multithreading & Pthreads

POSIX



  

MIMD system architectures

● Shared memory

● Distributed memory



  

Multithreading

● A process is an instance of a running program
– Private address space, shared files/sockets

● A thread is a single unit of execution in a process
– Private stack/registers, shared address space

● Multithreading libraries provide thread management
– Spawn/kill capabilities

– Synchronization mechanisms

– POSIX threads: Pthreads



  

POSIX threads

● Pthreads – POSIX standard interface for threads in C

– Must #include <pthread.h> and link using -lpthread

– pthread_create: spawn a new thread
● pthread_t opaque struct for storing thread info
● attributes (or NULL)
● thread work routine (function pointer)
● work routine parameter (void*)

– pthread_self: get current thread ID

– pthread_exit: terminate current thread
● can also terminate implicitly by returning from the thread routine

– pthread_join: wait for another thread to terminate



  

Thread creation example

#include <stdio.h>
#include <pthread.h>

void* work (void* arg)
{
    printf("Hello from new thread!\n");
    return NULL;
}

int main ()
{
    printf("Spawning new thread ...\n");

    pthread_t peer;
    pthread_create(&peer, NULL, work, NULL);
    pthread_join(peer, NULL);

    printf("Done!\n");

    return 0;
}
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Shared memory

● Some data is shared in threaded programs
– Global variables (shared, single static copy)

– Local variables (multiple copies, one on each stack)
● Technically still shared if in memory, but harder to access
● Not shared if cached in register
● Safer to assume they're private

– Local static variables (shared, single static copy)

● Also shared:
– Heap-allocated memory (if the threads have pointers)

– Open files, sockets, pipes, etc.



  

Example (from CS 261)

int x = 0;

void foo()
{
    x += 7;
}

thread1 thread2

foo()



  

Example (from CS 261)

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

thread1 thread2

foo()



  

Example (from CS 261)

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

This interleaving is ok.

thread1 thread2

foo()

    irmovq x, %rcx
    irmovq 7, %rax

    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

    irmovq x, %rcx
    irmovq 7, %rax

    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret



  

Example (from CS 261)

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

PROBLEM!

thread1 thread2

foo()

    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx

    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx

    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret



  

Issues with shared memory

● Nondeterminism

– Incorrect code can produce “correct” results

– Test suites cannot guarantee correctness!

● Data race

– Multiple threads attempting to access a shared resource simultaneously

– Different interleavings may produce different outputs

● Deadlock

– All threads waiting such that none can make progress

● Starvation

– A particular thread never gets access to a shared resource



  

Tools for detecting thread issues

● Helgrind: Valgrind-based thread issue detector
– Available on the cluster! (use it for P1!)

– Usage:  valgrind --tool=helgrind <YOUR PROGRAM>

– Detects data races, deadlock, and other Pthread misuses

– Helgrind documentation

● Other tools:
– Intel Inspector

– Arm DDT

– Google ASan

https://valgrind.org/docs/manual/hg-manual.html


  

Example
#include <stdio.h>

#include <pthread.h>

int count = 0;

int increment(int x) {

    return x + 1;

}

void* work (void* arg) {

    for (int i = 0; i < 10000; i++) {

        count = increment(count);

    }

    return NULL;

}

int main () {

    pthread_t peer;

    pthread_create(&peer, NULL, work, NULL);

    for (int i = 0; i < 10000; i++) {

        count = increment(count);

    }

    pthread_join(peer, NULL);

    printf("count = %d\n", count);

    return 0;

}

#include <stdio.h>

#include <pthread.h>

int count = 0;

pthread_mutex_t count_mut = PTHREAD_MUTEX_INITIALIZER;

int increment(int x) {

    return x + 1;

}

void* work (void* arg)

{

    for (int i = 0; i < 10000; i++) {

        pthread_mutex_lock(&count_mut);

        count = increment(count);

        pthread_mutex_unlock(&count_mut);

    }

    return NULL;

}

int main ()

{

    pthread_t peer;

    pthread_create(&peer, NULL, work, NULL);

    for (int i = 0; i < 10000; i++) {

        pthread_mutex_lock(&count_mut);

        count = increment(count);

        pthread_mutex_unlock(&count_mut);

    }

    pthread_join(peer, NULL);

    printf("count = %d\n", count);

    return 0;

}



  

Synchronization mechanisms

● Busy-waiting (wasteful!)

● Atomic instructions (e.g., LOCK prefix in x86)

● Pthreads

– Mutex: simple mutual exclusion (“lock”)

– Condition variable: lock + wait set (wait/signal/broadcast)

– Semaphore: access to limited resources
● Not technically part of Pthreads library (just the POSIX standard)

– Barrier: ensure all threads are at the same point
● Not present in all implementations (requires --std=gnu99 on cluster)

● Java threads

– Synchronized keyword: implicit mutex

– Monitor: lock associated w/ an object (wait/notify/notifyAll)



  

Mutexes

● pthread_mutex_init (pthread_mutex_t*, attrs)

– Initialize a mutex

– PTHREAD_MUTEX_INITIALIZER macro for defaults
● pthread_mutex_lock (pthread_mutex_t*)

– Acquire mutex (block if unavailable)
● pthread_mutex_unlock (pthread_mutex_t*)

– Release mutex
● pthread_mutex_destroy (pthread_mutex_t*)

– Clean up a mutex



  

Barrier w/ mutex

Setup:
int counter = 0;                       // number of threads waiting
int thread_count;                      // number of total threads
pthread_mutex_t barrier_mutex;

Threads:
pthread_mutex_lock(&barrier_mutex);
counter++;
pthread_mutex_unlock(&barrier_mutex);
while (counter < thread_count);        // busy wait

Issue: wasted CPU cycles!



  

Semaphores

● sem_init (sem_t*, pshared, int value)

– Initialize a semaphore to value

● sem_wait (sem_t*)

– If value > 0, decrement value and return

– Else, block until signaled

● sem_post (sem_t*)

– Increment value and signal a blocked thread

– Use a loop to signal multiple blocked threads

● sem_getvalue (sem_t*, int*)

– Return current value

● sem_destroy (sem_t*)

– Clean up a semaphore



  

Barrier w/ semaphores

Setup:
sem_t count_sem;     // initialize to 1 (access to waiting_threads)

sem_t barrier_sem;   // initialize to 0

volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);

waiting_threads++;

if (waiting_threads < thread_count) {

    sem_post(&count_sem);

    sem_wait(&barrier_sem);

} else {  // last thread to the barrier

    waiting_threads--;

    sem_post(&count_sem);

    while (waiting_threads--> 0) {

        sem_post(&barrier_sem);

    }

}

Issue: barrier_sem 
can’t be re-used later 
(race condition if one thread 
hits the second barrier while 
another thread is still waiting 
to be posted on the first)



  

Condition variables

● pthread_cond_init (pthread_cond_t*, attrs)

– Initialize a condition variable
● pthread_cond_wait (pthread_cond_t*, pthread_mutex_t*)

– Release mutex and block until signaled

– Re-acquires mutex after waking up

– A variant also exists that times out after a certain period
● pthread_cond_signal (pthread_cond_t*)

– Wake a single blocked thread (should be holding the mutex)
● pthread_cond_broadcast (pthread_cond_t*)

– Wake all blocked threads (should be holding the mutex)
● pthread_cond_destroy (pthread_cond_t*)

– Clean up a condition variable



  

Barrier w/ condition variable

Setup:
mutex_t count_mut;

cond_t done_waiting;

volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);

waiting_threads++;

if (waiting_threads < thread_count) {

    cond_wait(&done_waiting, &count_mut);

} else {  // last thread to the barrier

    waiting_threads = 0;

    cond_broadcast(&done_waiting);

}

mutex_unlock(&count_mut);



  

Barrier comparison
Semaphores Condition

Setup:

barrier_t barrier;    // initialize to nthreads

Threads:

barrier_wait(&barrier);

Barrier

Setup:

mutex_t count_mut;

cond_t done_waiting;

volatile int waiting_threads = 0;

Threads:

mutex_lock(&count_mut);

waiting_threads++;

if (waiting_threads < thread_count) {

    cond_wait(&done_waiting, &count_mut);

} else {  // last thread to the barrier

    waiting_threads = 0;

    cond_broadcast(&done_waiting);

}

mutex_unlock(&count_mut);

Setup:

sem_t count_sem;     // initialize to 1

sem_t barrier_sem;   // initialize to 0

volatile int waiting_threads = 0;

Threads:

sem_wait(&count_sem);

waiting_threads++;

if (waiting_threads < thread_count) {

    sem_post(&count_sem);

    sem_wait(&barrier_sem);

} else {  // last thread to the barrier

    waiting_threads--;

    sem_post(&count_sem);

    while (waiting_threads--> 0) {

        sem_post(&barrier_sem);

    }

}



  

Condition variables

● Issue: POSIX standard says that pthread_cond_wait might experience 
spurious wakeups from sources other than signal/broadcast calls
– Goal: optimize runtime and force programmers to write correct code

while (pthread_cond_wait(&cond, &mut) != 0);

● Issue: non-determinism!
– Every condition should have an associated boolean predicate
– The predicate should be true before condition is signaled

e.g., “task_queue_size > 0”
– Waiting thread should re-check predicate after waking up

● Another thread may have invalidated it in the meantime!
– Best practice: use a predicate loop

pthread_mutex_lock(&mut);

while (!predicate) {

    pthread_cond_wait(&cond, &mut);

}

pthread_mutex_unlock(&mut);



  

Condition variables

Setup (static):

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

volatile boolean status = false;    // protected by mutex

Thread 1:

pthread_mutex_lock(&mutex);

while (!status) {

    pthread_cond_wait(&cond, &mutex);

}

// at this point, status == true and mutex is locked

Thread 2:

// do something that triggers status

pthread_mutex_lock(&mutex);

status = true;

pthread_cond_signal(&cond);    // or pthread_cond_broadcast

pthread_mutex_unlock(&mutex);



  

Condition variables

Setup (static):

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

volatile boolean status = false;    // protected by mutex

Thread 1:

pthread_mutex_lock(&mutex);

while (!status) {

    pthread_cond_wait(&cond, &mutex);

}

// at this point, status == true and mutex is locked

Thread 2:

// do something that triggers status

pthread_mutex_lock(&mutex);

status = true;

– pthread_cond_signal(&cond);    // or pthread_cond_broadcast

pthread_mutex_unlock(&mutex);

initializer macros; can 
be used if you don’t 
need attributes

C keyword meaning “don’t optimize this 
variable; it could change at any time”

check predicate again!

set predicate

always acquire lock 
before wait, signal, or 
broadcast



  

Error checking

● All Pthreads calls might return a non-zero value
– This generally indicates an error (except for cond_wait)
– Recovering from errors is not our primary concern now

● Although we’ll talk a bit about fault tolerance later this 
semester

– For now, just write a wrapper to abort on error
– Example:

void lock(pthread_mutex_t *mut)
{
    if (pthread_mutex_lock(mut) != 0) {
        printf("ERROR: could not acquire mutex\n");
        exit(EXIT_FAILURE);
    }
}



  

Common synchronization patterns

● Naturally (“embarrassingly”) parallel

– No synchronization!

● Mutual exclusion

– Use a lock to prevent simultaneous access

● Producer/consumer

– Protect common buffer w/ lock

● Readers/writers

– Multiple lock types

● Supervisor/worker

– One producer, many consumers

● Dining philosophers

– Atomic acquisition of multiple locks



  

Supervisor/worker model

● Common pattern: supervisor/worker threads

– Original “supervisor” thread creates multiple “worker” threads

– Each worker thread does a chunk of the work
● Coordinate via shared global data structure w/ locking

– Main/supervisor thread waits for workers, then aggregates 
results

supervisor

workers create

join



  

Thread pool model (P1)

● Minor tweak on supervisor/worker: thread pool model

– Supervisor thread creates multiple worker threads

– Work queue tracks chunks of work to be done
● Producer/consumer: supervisor enqueues, workers dequeue
● Synchronization required
● Workers idle while queue is empty

supervisor

workers

work queue

supervisor worker

worker

worker



  

P1 pseudocode

supervisor:

done = false
initialize work queue and sync variables
spawn worker threads

for each (action, num) pair in input:
if action == 'p':

add num to work queue
wake an idle worker thread

else if action == 'w':
wait num seconds

done = true
wake any idle workers
wait for all workers to finish

print results, clean up, and exit

worker:

while not done or queue is not empty:
if queue is not empty:

extract num from work queue

update(num)

else:
become idle until awakened

NOT COMPLETE, 
AND NOT THE 
ONLY SOLUTION!



  

Synchronization granularity

● Granularity: level at which a structure is locked
– Whole structure vs. individual pieces
– If individual pieces, which pieces?
– Simple locks vs. read/write locks
– Tradeoff: coarse vs. fine-grained locks



  

Locality

● Temporal locality: frequently-accessed items will 
continue to be accessed in the future
– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to be 
accessed soon
– Theme: sequential access is common

● Why do we care?
– Shared-memory programs with good locality run faster 

than programs with poor locality



  

Caching effects

● Caching

– Keep frequently-used stuff in faster memory

● Cache line

– Single unit of cached data

● Cache hits/misses

– Was data in cache? (if so, hit; if not, miss)

● Cache invalidation

– Writes to one cache can render another cache out-of-date

● False sharing

– Unnecessary cache invalidation



  

Multithreading summary

● Shared memory parallelism has a lot of benefits

– Low overhead for thread creation/switching

– Uniform memory access times (symmetric multiprocessing)

● It also has significant issues

– Limited scaling (# of cores)

– Requires explicit thread management

– Requires explicit synchronization (HARD!)

– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity

– Higher granularity: simpler but slower

– Lower granularity: more complex but faster
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