
  

CS 470 warm-up activity

● Introduce yourself to nearby classmates
● Work together as a group to answer the following 

questions:
– Assume each computer in the room has at least four CPU cores 

(a reasonable assumption for computers <5 years old). How many 
cores do we have in this room total?

– What is the world’s largest and fastest supercomputer? Where is it 
located, and how many cores does it contain?



  

World's fastest supercomputer (2025)

● El Capitan  (at least according to the Top500 list)

– Lawrence Livermore National Laboratory (California)
– 11,000+ nodes in 87+ racks taking up 7,500 sq. ft.
– 43,808 4th Gen EPYC 24C 1.8GHz CPUs
– 43,808 AMD Instinct MI300A APUs (each w/ 128G memory)
– Total of 11,039,616 cores!
– Slingshot-11 interconnect w/ 12.8 Tbps bandwidth
– TOSS (based on RHEL)
– 1.7 Eflops max Linpack performance
– 29.6 MW power consumption
– Dedicated January 9, 2025

Sources:
● top500.org
● llnl.gov
● nextplatform.com
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Motivation

● Why do we have (and why should we study) 
parallel and distributed systems?

● Let's go back to CS 261 …



  

von Neumann (CS 261)

CPU

ALU
Registers

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Bottleneck: CPU/memory bandwidth

Bottleneck: CPU speed



  

History of parallelism

● Uniprogramming / batch (1950s)
– Traditional von Neumann, no parallelism

● Multiprogramming / time sharing (1960s)
– Increased utilization, lower response time

● Multiprocessing / shared memory (1970s)
– Increased throughput, strong scaling

● Distributed computing / distributed memory (1980s)
– Larger problems, weak scaling

● Hybrid computing / heterogeneous (2000s onward)
– Energy-efficient strong/weak scaling



  

Moore’s Law



  

Issue: CPU Physics

● More transistors → higher energy use
● Higher energy use → higher heat
● Higher heat → lower reliability (e.g., signal leakage)
● Manufacturing limitations
● Quantum effects at sub-nanometer resolution
● Related observation: Dennard scaling (i.e., power consumption 

per area remains constant) failed in 2000s

Will Moore’s Law eventually fail?

(some argue it already has)



  

Alternative to Moore’s Law

● Scale out, not up
– More processors rather than faster processors

● (Remember El Capitan’s 1.8GHz processors?)

– Requires parallelism at higher levels than 
instruction-level parallelism (e.g., pipelining)

“Post-Moore’s Law Era”



  

System architectures

● However, there's also a limit to how many cores we 
can put in a single computer
– Energy consumption, heat emission, memory saturation

● Solution: more computers! (“nodes”)
– Communicate via network
– This is called a distributed system

● There are so many kinds of parallelism
– We need ways to concisely describe them and discuss 

their tradeoffs for particular applications



  

System architectures

● Flynn's Taxonomy
– Single Instruction, Single Data (SISD)

● Traditional von Neumann

● Increasingly insufficient!

– Single Instruction, Multiple Data (SIMD)
● Vector instructions (SSE/AVX) – remember from CS 261?

● GPUs and other accelerators

– Multiple Instruction, Multiple Data (MIMD)
● Single Program, Multiple Data (SPMD)

● Shared memory and distributed memory

– Single Instruction, Multiple Threads (SIMT)
● New term gaining prominence in past few years

● Alternative way of describing GPUs

Trend: higher number of slower, 
more energy-efficient processors



  

System architectures

● Shared memory

– Idea: add more CPUs or GPUs

– Paradigm: threads

– Technologies: Pthreads, OpenMP, CUDA

– Issue: synchronization

● Distributed memory

– Idea: add more computers

– Paradigm: message passing

– Technologies: MPI, PGAS

– Issue: data movement

Usual tradeoff: simplicity (shared) vs. scalability (distributed)



  

Shared memory summary

● Shared memory systems can be very efficient

– Low overhead for thread creation/switching

– Uniform memory access times (symmetric multiprocessing)

● They also have significant issues

– Limited scaling (# of cores) due to interconnect costs

– Requires explicit thread management and synchronization

– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity

– Higher granularity: simpler but slower

– Lower granularity: more complex but faster

– Paradigm: synchronization is expensive



  

Distributed memory summary

● Distributed systems can scale massively

– Hundreds or thousands of nodes, petabytes of memory

– Millions of cores, petaflops of computation capacity

● They also have significant issues

– Non-uniform memory access (NUMA) costs

– Requires explicit data movement between nodes

– More difficult debugging and optimization

● Core design tradeoff: data distribution

– How to partition and arrange the data; is any of it duplicated?

– Goal: minimize data movement

– Paradigm: computation is “free” but communication is not



  

P/D systems are ubiquitous

● “New” problem: writing correct and performant 
parallel/distributed software
– Implementing parallelism is often hard

– Sometimes the problem is not naturally parallel

– Sometimes communication overwhelms computation

– But the stakes are too high to ignore parallelism!



  

Core issue: parallelization

● As humans, we usually think sequentially
– “Do this, then that” w/ deterministic execution

● Parallel programming requires a different approach
– “Do this and that in any order (or at the same time)”

– Introduction of non-determinism

– Requires sophisticated understanding of dependencies

● Sometimes, the best parallel solution is to discard the 
serial solution and revisit the problem



  

Example from IPP

● Compute n values and calculate their sum
● Serial solution:

How should we parallelize this?

What problems will we encounter?

sum = 0;
for (i = 0; i < n; i++) {
    sum += compute_value(i);
}



  

Example from IPP

● Initial parallel solution:

Insight: split up the compute 
work, then have the main 
node aggregate the results

Shared-mem alternative: 
use a mutex!

sum = 0;
first_i = … ;
last_i = … ;

for (i = first_i; i < last_i; i++) {
    sum += compute_value(i);
}

if (is_main_node()) {
    for (t = 0; t < n_threads; t++) {
        sum += receive(t);
    }
} else {
    send(sum, main_thread);
}



  

Example from IPP

● There’s a better way to compute the final sum

– Distribute the work; don’t do all the additions serially

– Fewer computations on the critical path (longest chain of work)

Original version: 7 messages and 7 additions

Clever version: 3 messages and 3 additions

Nodes Nodes

Time



  

Example from IPP

● Improvement is even greater w/ higher # of nodes
● For 1000 nodes:

– Original version: 999 messages and 999 additions
– Clever version: 10 messages and 10 additions

This is an asymptotic improvement!

(why?)



  

Discussion

● Assume we have three grading TAs to grade a 
15-question exam for roughly 300 students. How 
do we finish the grading as quickly as possible?
– Are there multiple valid approaches?



  

Kinds of parallelism

● Task parallelism / decomposition

– Partition tasks among processes

– Pass data between processes

– Work can be highly optimized

● Data parallelism / decomposition

– Partition data among processes

– Each process performs all tasks

– Lower latency for individual outputs

Potential tradeoff: throughput (task) and latency (latency)



  

Our goals this semester

● Learn some parallel & distributed programming technologies

– Pthreads, OpenMP, CUDA, MPI

● Study parallel & distributed system architectures

– Shared memory, distributed cluster, hybrid, cloud

● Study general parallel computing approaches

– Parallel algorithms, message passing, task/data decomposition

● Analyze application performance

– Speedup, weak/strong scaling, locality, communication overhead

● Explore parallel & distributed issues

– Networks, synchronization & consistency, fault tolerance, security



  

Parallel & distributed systems

● Hardware architectures

● Performance analysis and profiling

● Networks and naming

● Software patterns & frameworks

(w/ standard projects P1-P3)

● Fault tolerance

● Synchronization and consistency

● Security

● Cloud computing

● Applications: Web & File Systems

(w/ final project)

First half 
of CS 470

Second half 
of CS 470



  

Course textbook

● An Introduction to Parallel Programming, 2nd Edition

– Peter S. Pacheco and Matthew Malensek

– New-ish edition!

● Sources:

– Amazon ($53)

– Elsevier ScienceDirect (free!)
● (electronic, link on syllabus)



  

Course notes

● The course slides are the course notes, and they are 
quite comprehensive
– Especially during the second half

– Not all topics will be covered explicitly in class

– Most topics will not be covered extensively in lectures

– We’ll focus on the most useful / difficult topics during class

– You are responsible for reviewing the slides for all material 
not fully covered in class

– Ask clarification questions during next class period



  

Course format

● Public files and calendar on website (bookmark it!)
● Private files and grades on Canvas

● Canvas quizzes (usually 1-2 per week)
– Two attempts; goal is to prompt re-reading if needed

● In-class labs (usually ~1 per week) w/ Canvas submission
– Groups of two or three (submit one copy with everyone’s names)

● Standard projects (every 2-3 weeks in 1st half) w/ Canvas submission
– Groups of up to two

● Final project (entire semester, starting now!)
– Groups of up to four (three HIGHLY recommended)

● In-class exams (two midterms & final)



  

Course grades

Quizzes and Labs 20%

Projects 30%

Exams 50%

● Quizzes and labs are formative
– Designed to help you learn

● Exams are summative
– Designed to assess what you have learned

● Projects are both
– Designed to give you experience writing parallel and distributed programs

– Intended as both a learning experience but also to measure progress



  

Assumed skills

● All material in CS 261 and CS 361

– (we will review Pthreads a bit)

● Some other things you should be able to do:

– Login to a remote Linux server via SSH in a terminal

– Copy files and folders on the command line (cp)

– Edit files from the command line (e.g., nano or vim)

– Download files using the command line (e.g., curl or wget)

– Implement a singly-linked list

– Use GDB to find segfault sources

– Use GDB or logs to trace execution

– Use Valgrind to locate memory problems



  

Standard projects

● Practice using parallel and distributed technologies

– Pthreads, OpenMP, and MPI

● Practice good software engineering and code analysis

● Code can be written individually or in teams of two

– Benefits vs. costs of working in a team

– AI-assist technologies are allowed – statement required re: use

● Analysis results must be included in comments at top

– Requirements will vary by assignment



  

Final project

● Semester-long project

– Teams of 2-4 people (three HIGHLY recommended)

– Personalized topic; somewhat open-ended

– Find an existing parallel/distributed software system

– Three parts:
● 1) Analysis, 2) insights, and 3) contributions

– Multiple submissions:
● Ideas, groups, design, draft, poster/showcase, final

– Graded on progress, quality, and application of course concepts

– Goal: significant, open-ended “capstone” experience

– More details on final project overview website

https://w3.cs.jmu.edu/lam2mo/cs470_2025_01/project_ideas.html


  

Final Project Guidelines

● Most importantly: DON’T STRESS!

● Find a topic you are interested in that is related to our course topics

● Find two or three like-minded students in the class to work with

● Start early and schedule regular work sessions to make steady progress

● Avoid naturally-parallel problems; try to find something non-trivial

● Unless approved, the software must run on our cluster or lab machines

● Unless approved, the majority of the code must be written in C or C++

● Prefer large software systems (e.g., thousands of lines of code or more)

● Prefer distributed software systems (e.g., MPI-based or networked)



  

Our distributed cluster

● Compute nodes: 
– 9x Dell PowerEdge R6525 w/ 2x AMD EPYC 7252 (8C, 3.1 Ghz, HT) 64 GB

– 8x Dell PowerEdge R6525 w/ 2x AMD EPYC 7252 (8C, 3.1 Ghz, HT) 64 GB and NVIDIA A2 GPU

● Login node: Dell PowerEdge R6525 w/ 2x AMD EPYC 7252 (8C, 3.1 Ghz, HT) 64 GB
● File server: Dell PowerEdge R730 w/ Xeon E5-2640v3 (8C, 2.6Ghz, HT) 32 GB

– Storage: 8x 1.2TB 10K SAS HDD w/ RAID

● Interconnect: Dell N3024 Switch 24x1GbE, 2x10GbE SFP+ (212Gbps duplex)

compute21-29
gpu01-08

login02



  

Cluster access

● Detailed instructions online:  
w3.cs.jmu.edu/lam2mo/cs470/cluster.html

● Connect to login node via SSH

– Hostname: login02.cluster.cs.jmu.edu

– User/password: (your e-ID and password)

● Recommended conveniences

– Set up public/private key access from stu

– Set up .ssh/config entries
● w/ stu as jump host if you want off-campus access

http://w3.cs.jmu.edu/lam2mo/cs470/cluster.html


  

Cluster access

● Things to play with:
– "squeue" or "watch squeue" to see jobs
– "srun <command>" to run an interactive job

● Use “-n <p>” to launch p processes
● Use “-N <n>” to request n nodes (defaults to p/16)
● The given “<command>” will run in every process
● Use “--gres=gpu” to request one of the GPU nodes

– "srun -n <p> <command>" to run an interactive MPI job
● Will launch p MPI processes 

srun hostname
srun -n 4 hostname
srun -n 16 hostname
srun -N 4 hostname
srun sleep 5
srun -N 2 sleep 5

module load mpi
srun -n 1 /shared/cs470/mpi-hello/hello
srun -n 2 /shared/cs470/mpi-hello/hello
srun -n 4 /shared/cs470/mpi-hello/hello
srun -n 8 /shared/cs470/mpi-hello/hello
srun -n 16 /shared/cs470/mpi-hello/hello
(etc.)

What’s the max n?

Hostname: login02.cluster.cs.jmu.edu



  

TODO items for this weekend

● Take course welcome survey if you haven’t already

● Review Pthreads slides

● Make sure you can SSH into login02.cluster.cs.jmu.edu

– Must be on JMU network (e.g., proxy jump through stu)

– Email me BEFORE the next class if you encounter issues

● Final project overview and idea quiz due next Friday

– Start talking with others about topics!
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