Security

a.k.a. “Why on earth do Alice and Bob need to share so many secrets?!?”

Content taken from the following:
“Distributed Systems: Principles and Paradigms” by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 9)
Various online sources
Security Issues ("CIA Triad")

- **Confidentiality**: data is only disclosed to authorized users
- **Integrity**: changes can only be made by authorized users
- **Availability**: data is consistently accessible to authorized users
- **Security threats**
 - Interception
 - Interruption
 - Modification

https://en.wikipedia.org/wiki/Information_security
Distributed security

- **Interception**: has data been received by an attacker?
 - Usually reserved for receipt of *unencrypted* data

- **Interruption**: can a service be disrupted by an attacker?
 - Sometimes via multiple sources

- **Modification**: can an attacker change data during transmission?
 - Enables “person-in-the-middle” attacks

- **Fabrication**: can an attacker create legitimate-looking data?
 - Does not require existing communication
An attacker manages to overwhelm a popular social media website by sending millions of messages via a botnet. What threat model does this correspond to?

- A. Interception
- B. Interruption
- C. Modification
- D. Fabrication
- E. None of the above
An attacker manages to steal your email password using a packet sniffer at a coffee shop. What threat model does this correspond to?

- A. Interception
- B. Interruption
- C. Modification
- D. Fabrication
- E. None of the above
An attacker tricks a web server into revealing sensitive information by forging a packet that looks like a normal request. Which threat model does this correspond to?

- A. Interception
- B. Interruption
- C. Modification
- D. Fabrication
- E. None of the above
Security Solutions

- **Security policy**: description of actions allowed in a system
 - E.g., "users in group 'students' may read files located in /shared but cannot write to them"

- **Policy enforcement mechanisms**
 - Encryption
 - Authentication
 - Authorization
 - Auditing
Distributed security

- **Encryption**: are messages secure against eavesdroppers?
 - Variation on end-to-end principle

- **Authentication**: are you connecting to the real recipient?
 - Issue of identity verification

- **Authorization**: do you have permission to perform this action?
 - Intersects with business/policy concerns

- **Auditing**: has the system been compromised?
 - Often bound by legal requirements
• Principle Of “Least Privilege” (POLP)
 - Every process or user should only be able to access resources or perform actions that are *strictly necessary*
 - Systems should be designed to *minimize privilege*
 - Limits vulnerability of the system to compromised components
 - Minimizes the need for full trust in participants
 - *Social engineering* can compromise even well-meaning participants
The principle of "least privilege" often reveals a tension between security and:

- A. scalability
- B. consistency
- C. partition tolerance
- D. convenience
- E. availability
Trust

• How much of your computer do you trust?
 − (and what does that even mean?)

• "Reflections on Trusting Trust"
 − A compiler virus that inserts a backdoor into `login()`
 − It also re-inserts itself to any further compilers
 − Ken Thompson Turing Award lecture (1984)
 https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

• Trusted Computing Base (TCB)
 − Minimal component of a system trusted to enforce security policies
 − Sometimes a physically-separate ROM-based processor
 − Hidden encryption key inaccessible to the rest of the system
 − Trusted Computing Group's Trusted Platform Module (TPM)
Encryption
Hash functions

- One-way hash functions \textit{w/} collision resistance
 - Computationally infeasible to reverse
 - \textbf{MD5}: 128-bit fixed-length message digest
 - \textbf{SHA-1} / \textbf{SHA-2} / \textbf{SHA-256} / \textbf{SHA-512}

A, B, C, D and E are 32-bit words of the state;
\(F \) is a nonlinear function that varies;
\(\lll_n \) denotes a left bit rotation by \(n \) places;
n varies for each operation;
\(W_t \) is the expanded message word of round \(t \);
\(K_t \) is the round constant of round \(t \);
\(+ \) denotes addition modulo \(2^{32} \)

SHA1("The quick brown fox jumps over the lazy dog")
= 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

SHA1("The quick brown fox jumps over the lazy cog")
= de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3

One iteration of SHA-1

from https://en.wikipedia.org/wiki SHA-1
Cryptography

- **Terminology**
 - **Plaintext**: original message
 - **Ciphertext**: encrypted plaintext
 - **Nonce**: random number that is only used once
 - **Encrypt**: turn plaintext into ciphertext
 - \[C = E_K(P) \]
 - Usually based on a one-way hash function
 - **Decrypt**: turn ciphertext into plaintext
 - \[P = D_K(C) \]
 - Alternatively: \[P = D_K(E_K(P)) \]
 - **Cryptographic system**: pair of \(D() \) and \(E() \) functions
Cryptography

- **Symmetric** ($P = D_k(E_k(P))$) vs. **asymmetric** ($P = D_{KD}(E_{KE}(P))$)
 - Same key vs. key pair
 - **Private key** vs. **public/private keys**

- **Symmetric (e.g., Advanced Encryption Standard (AES))**
 - Various bitwise operations with different key values
 - Fast to encrypt/decrypt, relies on robust secret keys
 - Relatively secure against quantum computing attacks

- **Asymmetric (e.g., Rivest, Shamir, Adleman (RSA))**
 - Multiplication and modulus operations with large prime keys
 - Signing (encrypt w/ private) and secure messaging (encrypt w/ public)
 - Slow to encrypt/decrypt
 - Relies on difficulty of **prime factorization** or **elliptic curve discrete logarithms**
Cryptography

• Why are one-way hash functions used for cryptography?
 – A. They don’t require floating-point operations
 – B. They are computationally expensive to compute
 – C. They are computationally expensive to reverse
 – D. They generate true random numbers
 – E. They generate pseudo-random numbers
Elliptic curve cryptography

- **Elliptic curves** \((e.g., y^2 = x^3 + ax + b) \)
 - Horizontal symmetry, and any non-vertical line will intersect the curve in at most three places
 - “Dot” operation: given two points, find third and then reflect
 - Very difficult to undo! (essentially a one-way hash)
 - **ECDSA** is a variant of DSA that uses elliptic curves

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
Cryptography

• Suppose you already have a shared secret with a friend. Which technology is best for transferring a very large (multi-GB) file with that friend?

 - A. AES
 - B. RSA
 - C. MD5
 - D. SHA-1
 - E. SHA-256
Authentication
Authentication

• A **secure channel** provides security on an unsecured network
 - Requires some kind of setup first
 - Protects against interception, modification, and fabrication
 • Cannot prevent interruption (recall CAP theorem)
 - Issue: authentication (verifying the identity of the recipient)
 - Issue: establishing shared secrets (after verifying identity)

• Security protocols
 - Shared-key authentication (requires pairwise secrets)
 - **Needham-Schroeder** authentication (uses central server)
 - Key signing parties (physical exchange of keys)
 - **Diffie-Helman** key exchange (uses public messaging)
Shared-key authentication

- **Basic challenge-response protocol**
 - Alice contacts Bob (“A”)
 - Bob issues a challenge (“R_B”) and receives a response (R_B encrypted using shared key $K_{A,B}$)
 - Alice also issues a challenge (“R_A”) and receives a similar response
 - Issue: requires shared key

from Tanenbaum and Van Steen (Ch. 9)
Shared-key authentication

- What is the minimum number of steps for a challenge-response protocol, assuming that neither entity has identified or contacted the other yet (but assuming that they do have a shared key)?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
 - E. 6
Needham-Schroeder authentication

- Uses a central **Key Distribution Center (KDC)**
 - Alice sends a nonce to the KDC to request communication with Bob
 - The nonce prevents a replay attack using an old (compromised) $K_{B,KDC}$
 - Alice receives a new shared key ($K_{A,B}$) as well as an encrypted copy to send to Bob
 - Bob and Alice then exchange challenges and responses using this shared key

Figure 9-17. The Needham-Schroeder authentication protocol.

from Tanenbaum and Van Steen (Ch. 9)
Needham-Schroeder authentication

- **Kerberos** is similar, but uses two servers:
 - Authentication Server (AS) to establish identity (authentication)
 - Ticket Granting Server (TGS) to verify permissions (authorization) and set up shared key

![Diagram of Needham-Schroeder authentication protocol](image1)
![Diagram of Kerberos authentication](image2)

Figure 9-17. The Needham-Schroeder authentication protocol.

Figure 9-23. Authentication in Kerberos.

- shared secret
- Bob's copy of shared secret
- session key
- ticket

from Tanenbaum and Van Steen (Ch. 9)
Kerberos

Figure 9-23. Authentication in Kerberos.

Figure 9-24. Setting up a secure channel in Kerberos.
Public keys

• Private keys are used to sign documents by encrypting them
 - Public key can also be used to encrypt a document for a single recipient (the one who holds the private key)

• A certificate is a signed document claiming to own a public key
 - Only the public key can decrypt the document, proving it was encrypted using the corresponding private key

• At a key signing party, participants exchange public keys
 - This allows others to later sign a certificate containing a known public key (thus vouching for its authenticity)
 - Purely peer-to-peer; no central server required
Public keys

- Issues: scaling and certificate revocation
 - Revocation lists and certificate lifetime limits
- In a large distributed system, a Public-Key Infrastructure (PKI) provides scalable certificate management
 - Usually implemented using trusted third-party certificate authorities (CAs)
 - CAs issue certifications, handle authorization requests, and revoke certificates when necessary
 - Domain validation (DV) vs. organization/extended validation (OV/EV)
Let’s Encrypt

- Open source and free certificate authority
 - Goal: make HTTPS (encrypted HTTP) ubiquitous
 - Automated Certificate Management Environment (ACME) protocol for certificate issuing

Figure 2: ACME protocol. This diagram illustrates how an ACME client can obtain a certificate without human interaction. In the dashed region, the client proves ownership of the domain using an HTTP-based challenge.
Diffie-Hellman key exchange

- Allows distributed entities to establish a shared secret via unsecured channels
- Can be extended to more than two entities
- Resists person-in-the-middle attacks
 - Third party pretends to be other conversant

1. Alice and Bob agree to use a modulus \(p = 23 \) and base \(g = 5 \)
2. Alice chooses a secret integer \(a = 6 \), then sends Bob \(A = g^a \mod p \)
 - \(A = 5^6 \mod 23 = 8 \)
3. Bob chooses a secret integer \(b = 15 \), then sends Alice \(B = g^b \mod p \)
 - \(B = 5^{15} \mod 23 = 19 \)
4. Alice computes \(s = B^a \mod p \)
 - \(s = 19^6 \mod 23 = 2 \)
5. Bob computes \(s = A^b \mod p \)
 - \(s = 8^{15} \mod 23 = 2 \)
6. Alice and Bob now share a secret (the number 2).

Both Alice and Bob have arrived at the same value \(s \), because, under mod \(p \),
\[A^b \mod p = g^{ab} \mod p = g^{ba} \mod p = B^a \mod p \]
More specifically,
\[(g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p \]

Authorization
Authorization

- **Access control** mechanisms enforce authorization constraints
 - Internal vs. external access control
 - **Firewalls** prevent external access to a host or internal network
 - Defends against Denial-of-Service (DoS) or distributed DoS (DDoS) attacks
 - **Access control lists/matrices** track user permissions

```
# directory?
user: instructorid: rwx
user: graderid: rwx
user: studentid: rwx
group: faculty: r-x
group: csmajor: ---
```

Unix file permissions

```
# file: .
# owner: studentid
# group: csmajor
user: instructorid: rwx
user: graderid: rwx
user: studentid: rwx
group: faculty: r-x
group: csmajor: ---
```

Access control list on stu
Authorization

• A directory service provides internal distributed authorization and access control
 − Handles user management, group membership, and password storage
 − Often distributed and/or replicated among multiple servers
 − Lightweight Directory Access Protocol (LDAP) for communication
 − Authentication provided by protocols like Kerberos
 − Example: Active Directory

• A single sign-on service provides authorization for multiple applications or systems
 − Often provides seamless hand-off of an authentication ticket
 − May also use a directory service
 − Examples: Facebook Connect, OAuth, OpenID, Shibboleth
Security policy enforcement

Auditing
• **Access logs** provide an audit trail for a system
 - Who can access the logs? Who can modify them?
 • Encryption is useful here
 - **Append-only logs** provide guarantees against tampering using checksums and/or cryptographic signing
 - **Bitcoin** (and other cryptocurrencies) uses an append-only blockchain of cryptographically-signed transactions to preserve financial integrity
 • Demo: https://andersbrownworth.com/blockchain/blockchain
What security concern does the Needham-Schroeder protocol primarily address?

- A. Encryption
- B. Authentication
- C. Authorization
- D. Auditing
- E. None of the above
What security concern does blockchain technology primarily address?

- A. Encryption
- B. Authentication
- C. Authorization
- D. Auditing
- E. None of the above
What security concern does the RSA algorithm primarily address?

- A. Encryption
- B. Authentication
- C. Authorization
- D. Auditing
- E. None of the above