

CS 470
Spring 2023

Mike Lam, Professor

Parallel Algorithms

Graphics and content taken from IPP section 2.7 and the following:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf (no longer accessible)
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf (no longer accessible)

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

Parallel program development

● Writing efficient parallel code is hard
● We'll cover two generic paradigms ...

– Shared-memory
– Distributed message-passing

● … and three specific technologies
– Pthreads
– OpenMP
– MPI

● Given a problem, how do we approach the development of
a parallel program that solves it?

Method vs. methodology

● Method: a systematic process or way of doing a task
● Methodology: analysis of methods relevant to a discipline

– Literally: "the study of methods"
– Goal: guidelines or best practices for a class of methods

● Parallel algorithms
– There is no single method for creating efficient parallel algorithms
– However, there are some good methodologies that can guide us
– We will study one: Foster's methodology

Foster's methodology

● Task: executable unit along with local memory and I/O ports
● Channel: message queue connecting tasks' input and output ports
● Drawn as a graph, tasks are vertices and channels are edges
● Steps:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Task 1 Task 2

Channel

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html

Partitioning

● Goal: discover as much parallelism as possible
● Divide computation into as many primitive tasks as

possible
– Avoid redundant computation
– Primitive tasks should be roughly the same size
– Number of tasks should increase as the problem size

increases
● This helps ensure good scaling behavior

Partitioning

● Domain ("data") decomposition
– Break tasks into segments of various granularities by data

Partitioning

● Functional ("task") decomposition
– Separation by task type
– Domain/data decomposition can often be used inside of

individual tasks

Pipelined Non-pipelined

Communication

● Goal: minimize overhead
● Identify which tasks must communicate and how

– Local (few tasks) vs. global (many tasks)
– Structured (regular) vs. unstructured (irregular)
– Prefer local, structured communication
– Tasks should perform similar amounts of communication

● This helps with load balancing

– Communication should be concurrent wherever possible

Communication

● Examples of local communication:

Structured Unstructured

Communication

● Examples of global communication:

Structured Unstructured

Agglomeration

● Goal: Reduce messages and simplify programming
● Combine tasks into groups, increasing locality

– Groups should have similar computation and
communication costs

– Task counts should still scale with processor count
and /or problem size

– Minimize software engineering costs
● Agglomeration can prevent code reuse

Agglomeration

● Examples:

Agglomeration of four local tasks Agglomeration of tree-based tasks

Mapping

● Goal: minimize execution time
– Alternately: maximize processor utilization
– On a distributed system: minimize communication

● Assign tasks (or task groups) to processors/nodes
– Block vs. cyclic
– Static vs. dynamic

● Strategies:
– 1) Place concurrent tasks on different nodes
– 2) Place frequently-communicating tasks on the same node

● Problem: these strategies are often in conflict!
– The general problem of optimal mapping is NP-complete

Mapping

● Examples:

Cyclic mapping Dynamic mapping

Block mapping

Boundary Value Problem

● Problem
– General statement: Determine the temperature changes in a thin

cylinder of uniform material with constant-temperature boundary
caps over a given time period, given the size of the cylinder and its
initial temperature

– General solution: solve partial differential equation(s)
● Often too difficult or expensive to solve analytically

– Approximate solution: finite difference method
● Discretize space (1d grid) and time (ms)

● Goal: Parallelize this solution, using Foster's
methodology as a guide

Boundary Value Problem

Boundary Value Problem

Boundary Value Problem

Boundary Value Problem

Finding a maximum

● Problem: Determine the maximum value among
some large set of given values
– Special case of a reduction

● Goal: Parallelize this solution, using Foster's
methodology as a guide

Finding a maximum

● Partitioning: each value is a primitive task
– (1d domain decomposition)
– One task (root) will compute final solution

● Communication: divide-and-conquer
– Root task needs to compute max after n-1 tasks
– Keep splitting the input space in half

Finding a maximum

● Binomial tree with n = 2k nodes
– (sneak peek for merge sort in P2)

Recursive
definition:

Examples:

Finding a maximum

Random number generation

● Goal: Generate pseudo-random numbers in a distributed way
● Problem: We wish to retain some notion of reproducibility

– In other words: results should be deterministic, given the RNG seed
– This means we can't depend on the ordering of distributed

communications
● Problem: We wish to avoid duplicated series of generated

numbers
– This means we can't just use the same generator in all processes

Random number generation

● Naive solution:
– Generate all numbers on one node and scatter them (a la P2)
– Too slow!

● Can we do better? (Foster's)
– Generating each random number is a task
– Channels between subsequent numbers from the same seed
– Tweak communication & agglomeration
– Minimize dependencies

Random number generation

Goal:
Uniform
randomness and
reproducibility

More info in Chapter 10 of
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html

Matrix access patterns

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

Common paradigms

● Grid/mesh-based nearest-neighbor simulation
– Often includes math-heavy computations

● Linear algebra and systems of equations
● Dense vs. sparse matrices

– Newer: adaptive mesh and multigrid simulations
● Worker pools / task queues

– Newer: adaptive cloud computing
● Pipelined task phases

– Newer: MapReduce
● Divide-and-conquer tree-based computation

– Often combined with other paradigms (worker pools and pipelines)

Data Science

● Data science is an interdisciplinary field that
extracts knowledge and insight from data
– The data are often large, unstructured, and/or noisy
– Motivation often comes from social sciences
– Process usually informed by statistics
– Analysis usually requires application of CS

● Databases and data processing
● Machine learning and artificial intelligence
● Data visualization and human-computer interaction
● Parallel and distributed systems

Big Data

● Big data is a broad term for analyzing or
processing large data sets
– Exact size depends on the organization and task
– Ranges from gigabytes to petabytes or exabytes
– Often requires handling streaming data
– Informally understood to begin at “the point at which

the current approach begins to fail”
– Requires new tools or a revised approach

MapReduce

● Parallel/distributed system paradigm for "big data" processing
– Uses a specialized file system and takes advantage of independent tasks
– Originally developed at Google (along with GFS)
– Currently popular: Apache Hadoop and HDFS

● General languages: Java, Python, Ruby, etc.
● Specialized languages: Pig (data flow language) or Hive (SQL-like)
● Growing quickly: Apache Spark (more generic w/ in-memory processing)
● For streaming data: Apache Storm, Google BigQuery, Azure Synapse

● Phases
– Map (process local data)
– Shuffle (distributed sort)
– Reduce (combine results)

MapReduce

● Word count example

Apache Spark (Python)

WORD COUNT

text_file = sc.textFile("hdfs://docs/input.txt")

counts = text_file.flatMap(lambda line: line.split(" ")) \

 .map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://results/counts.txt")

MONTE CARLO PI

def sample(p):

 x, y = random(), random()

 return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

 .map(sample) \

 .reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

A word of caution

● It is easy to over-engineer “big data” solutions
– Most “big data” problems aren’t really that big

● E.g., if your data set fits on a single hard drive, it’s
probably not a big data problem

– Traditional pipe-based or shared-memory solutions
will be simpler and possibly even faster

● Case study: “Command-line Tools can be 235x Faster
than your Hadoop Cluster”

– https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

● KISS principle: “Keep It Simple, Stupid”

https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

