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Parallel program development

● Writing efficient parallel code is hard
● We'll cover two generic paradigms ...

– Shared-memory
– Distributed message-passing

● … and three specific technologies
– Pthreads
– OpenMP
– MPI

● Given a problem, how do we approach the development of 
a parallel program that solves it?



  

Method vs. methodology

● Method: a systematic process or way of doing a task
● Methodology: analysis of methods relevant to a discipline

– Literally: "the study of methods"
– Goal: guidelines or best practices for a class of methods

● Parallel algorithms
– There is no single method for creating efficient parallel algorithms
– However, there are some good methodologies that can guide us
– We will study one: Foster's methodology



  

Foster's methodology

● Task: executable unit along with local memory and I/O ports
● Channel: message queue connecting tasks' input and output ports
● Drawn as a graph, tasks are vertices and channels are edges
● Steps:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Task 1 Task 2

Channel

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


  

Partitioning

● Goal: discover as much parallelism as possible
● Divide computation into as many primitive tasks as 

possible
– Avoid redundant computation
– Primitive tasks should be roughly the same size
– Number of tasks should increase as the problem size 

increases
● This helps ensure good scaling behavior



  

Partitioning

● Domain ("data") decomposition
– Break tasks into segments of various granularities by data



  

Partitioning

● Functional ("task") decomposition
– Separation by task type
– Domain/data decomposition can often be used inside of 

individual tasks

Pipelined Non-pipelined



  

Communication

● Goal: minimize overhead
● Identify which tasks must communicate and how

– Local (few tasks) vs. global (many tasks)
– Structured (regular) vs. unstructured (irregular)
– Prefer local, structured communication
– Tasks should perform similar amounts of communication

● This helps with load balancing

– Communication should be concurrent wherever possible



  

Communication

● Examples of local communication:

Structured Unstructured



  

Communication

● Examples of global communication:

Structured Unstructured



  

Agglomeration

● Goal: Reduce messages and simplify programming
● Combine tasks into groups, increasing locality

– Groups should have similar computation and 
communication costs

– Task counts should still scale with processor count 
and /or problem size

– Minimize software engineering costs
● Agglomeration can prevent code reuse



  

Agglomeration

● Examples:

Agglomeration of four local tasks Agglomeration of tree-based tasks



  

Mapping

● Goal: minimize execution time
– Alternately: maximize processor utilization
– On a distributed system: minimize communication

● Assign tasks (or task groups) to processors/nodes
– Block vs. cyclic
– Static vs. dynamic

● Strategies:
– 1) Place concurrent tasks on different nodes
– 2) Place frequently-communicating tasks on the same node

● Problem: these strategies are often in conflict!
– The general problem of optimal mapping is NP-complete



  

Mapping

● Examples:

Cyclic mapping Dynamic mapping

Block mapping



  

Boundary Value Problem

● Problem
– General statement:  Determine the temperature changes in a thin 

cylinder of uniform material with constant-temperature boundary 
caps over a given time period, given the size of the cylinder and its 
initial temperature

– General solution: solve partial differential equation(s)
● Often too difficult or expensive to solve analytically

– Approximate solution: finite difference method
● Discretize space (1d grid) and time (ms)

● Goal: Parallelize this solution, using Foster's 
methodology as a guide



  

Boundary Value Problem



  

Boundary Value Problem



  

Boundary Value Problem



  

Boundary Value Problem



  

Finding a maximum

● Problem: Determine the maximum value among 
some large set of given values
– Special case of a reduction

● Goal: Parallelize this solution, using Foster's 
methodology as a guide



  

Finding a maximum

● Partitioning: each value is a primitive task
– (1d domain decomposition)
– One task (root) will compute final solution

● Communication: divide-and-conquer
– Root task needs to compute max after n-1 tasks
– Keep splitting the input space in half



  

Finding a maximum

● Binomial tree with n = 2k nodes
– (sneak peek for merge sort in P2)

Recursive 
definition:

Examples:



  

Finding a maximum



  

Random number generation

● Goal: Generate pseudo-random numbers in a distributed way
● Problem: We wish to retain some notion of reproducibility

– In other words: results should be deterministic, given the RNG seed
– This means we can't depend on the ordering of distributed 

communications
● Problem: We wish to avoid duplicated series of generated 

numbers
– This means we can't just use the same generator in all processes



  

Random number generation

● Naive solution:
– Generate all numbers on one node and scatter them (a la P2)
– Too slow!

● Can we do better?  (Foster's)
– Generating each random number is a task
– Channels between subsequent numbers from the same seed
– Tweak communication & agglomeration
– Minimize dependencies



  

Random number generation

Goal:
Uniform 
randomness and 
reproducibility

More info in Chapter 10 of
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


  

Matrix access patterns

void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}



  

Common paradigms

● Grid/mesh-based nearest-neighbor simulation
– Often includes math-heavy computations

● Linear algebra and systems of equations
● Dense vs. sparse matrices

– Newer: adaptive mesh and multigrid simulations
● Worker pools / task queues

– Newer: adaptive cloud computing
● Pipelined task phases

– Newer: MapReduce
● Divide-and-conquer tree-based computation

– Often combined with other paradigms (worker pools and pipelines)



  

Data Science

● Data science is an interdisciplinary field that 
extracts knowledge and insight from data
– The data are often large, unstructured, and/or noisy
– Motivation often comes from social sciences
– Process usually informed by statistics
– Analysis usually requires application of CS

● Databases and data processing
● Machine learning and artificial intelligence
● Data visualization and human-computer interaction
● Parallel and distributed systems



  

Big Data

● Big data is a broad term for analyzing or 
processing large data sets
– Exact size depends on the organization and task
– Ranges from gigabytes to petabytes or exabytes
– Often requires handling streaming data
– Informally understood to begin at “the point at which 

the current approach begins to fail”
– Requires new tools or a revised approach



  

MapReduce

● Parallel/distributed system paradigm for "big data" processing
– Uses a specialized file system and takes advantage of independent tasks
– Originally developed at Google (along with GFS)
– Currently popular: Apache Hadoop and HDFS

● General languages: Java, Python, Ruby, etc.
● Specialized languages: Pig (data flow language) or Hive (SQL-like)
● Growing quickly: Apache Spark (more generic w/ in-memory processing)
● For streaming data: Apache Storm, Google BigQuery, Azure Synapse

● Phases
– Map (process local data)
– Shuffle (distributed sort)
– Reduce (combine results)



  

MapReduce

● Word count example



  

Apache Spark (Python)

WORD COUNT

text_file = sc.textFile("hdfs://docs/input.txt")

counts = text_file.flatMap(lambda line: line.split(" ")) \

                  .map(lambda word: (word, 1)) \

                  .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://results/counts.txt")

MONTE CARLO PI

def sample(p):

    x, y = random(), random()

    return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

          .map(sample) \

          .reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)



  

A word of caution

● It is easy to over-engineer “big data” solutions
– Most “big data” problems aren’t really that big

● E.g., if your data set fits on a single hard drive, it’s 
probably not a big data problem

– Traditional pipe-based or shared-memory solutions 
will be simpler and possibly even faster

● Case study: “Command-line Tools can be 235x Faster 
than your Hadoop Cluster”

– https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

● KISS principle: “Keep It Simple, Stupid”

https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
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