Matrices in HPC

\[\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\ln(l_1) \\
\ln(l_2) \\
\ln(l_3) \\
\ln(l_4) \\
\ln(l_5) \\
\ln(l_6) \\
\ln(l_7) \\
\end{bmatrix} = \begin{bmatrix}
\ln(r_{1,3,4}) \\
\ln(r_{1,3,5}) \\
\ln(r_{2,6}) \\
\ln(r_{2,7}) \\
\end{bmatrix} \]
Matrices

- Many scientific phenomena can be modeled as matrix operations
 - Differential equations, mesh simulations, view transforms, etc.
 - Many of these phenomena involve solving linear equations
 - Doing this requires linear algebra and the manipulation of large matrices
- Very efficient on vector processors (including GPUs)
 - Data decomposition and SIMD parallelism
 - Small, computation-intensive loop nests called kernels
 - Popular packages: BLAS, LINPACK, LAPACK, ATLAS

\[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
ln(l_1) \\
ln(l_2) \\
ln(l_3) \\
ln(l_4) \\
ln(l_5) \\
ln(l_6) \\
ln(l_7)
\end{bmatrix}
=
\begin{bmatrix}
ln(r_{1,3,4}) \\
ln(r_{1,3,5}) \\
ln(r_{2,6}) \\
ln(r_{2,7})
\end{bmatrix}
\]
A **sparse** matrix is one in which most elements are zero
- Could lead to more load imbalances
- Can be stored more efficiently, allowing for larger matrices
- **Dense**/normal matrix operations no longer work
- It is a challenge to make sparse operations as efficient as dense operations

\[
\begin{pmatrix}
11 & 22 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 33 & 44 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 55 & 66 & 77 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 88 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 99 & 0
\end{pmatrix}
\]
HPL benchmark

- **HPL**: LINPACK-based dense linear algebra benchmark
 - Generates a linear system of equations “Ax = b” - $O(n^2)$
 - Chooses b such that x (answer vector) values are known
 - Distributes dense matrix A in block-cyclic pattern
 - LU factorization - $O(n^3)$
 - Backward substitution to solve system - $O(n^2)$
 - Error calculation to verify correctness - $O(n)$
 - Calculate max sustained FLOPS (*floating-point operations per second*)
 - Usually significantly less than theoretical machine peak (R_{max} vs R_{peak})
 - Serves as proxy app for target workloads (similar characteristics)
 - Used to rank world's fastest systems on the Top500 list twice each year
 - Compiled on cluster
 - Located in /shared/apps/hpl-2.1/bin/Linux_PII_CBLAS
P3 (OpenMP)

• Similar to HPL benchmark
 1) Random generation of linear system (x should be all 1’s)
 2) Gaussian elimination (similar to LU factorization)
 3) Backwards substitution (row- or column-oriented)

Non-random example

Original system (Ax = b)

\[
\begin{align*}
3x + 2y - z &= 1 \\
2x - 2y + 4z &= -2 \\
-x + \frac{1}{2}y - z &= 0
\end{align*}
\]

Augmented matrix \([A \mid b]\)

\[
\begin{bmatrix}
3.0 & 2.0 & -1.0 & 1.0 \\
2.0 & -2.0 & 4.0 & -2.0 \\
-1.0 & 0.5 & -1.0 & 0.0
\end{bmatrix}
\]

Upper triangular system

\[
\begin{bmatrix}
3.0 & 2.0 & -1.0 & 1.0 \\
0.0 & -3.3 & 4.7 & -2.7 \\
0.0 & 0.0 & 0.3 & -0.6
\end{bmatrix}
\]

Backward substitution

\[
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 1.0 & 0.0 & -2.0 \\
0.0 & 0.0 & 1.0 & -2.0
\end{bmatrix}
\]

Solved system
Matrix representation

• 2D dense row-major matrices in C/C++
 - Often stored in 1D arrays w/ access via array index arithmetic
 - Trace data access patterns to determine dependencies
 - Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
 - Example (matrix multiplication):

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```
Matrix representation

- 2D dense row-major matrices in C/C++
 - Often stored in 1D arrays w/ access via array index arithmetic
 - Trace data access patterns to determine dependencies
 - Your goals: 1) **analyze**, 2) **parallelize** (w/ OpenMP), and 3) **evaluate**
 - Example (matrix multiplication):

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```

read as $R[i,j]$
Matrix access patterns

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```

\[R = AB \]
Matrix access patterns

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            # pragma omp parallel for default(none) \
           -shared(A,B,R,n,i,j) private(k)
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```

Incorrect b/c of loop-carried dependencies

```
== SERIAL ==
Nthreads= 1  TEST=pass  MULT=  0.1289
== PARALLEL ==
Nthreads= 1  TEST=pass  MULT=  0.4256
Nthreads= 2  TEST=FAIL  MULT=  0.5004
Nthreads= 4  TEST=FAIL  MULT=  0.5088
Nthreads= 8  TEST=FAIL  MULT=  0.6106
Nthreads=16  TEST=FAIL  MULT=  0.9350
```
Matrix access patterns

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            int tmp = 0;
            #pragma omp parallel for default(none) reduction(+:tmp) shared(A, B, R, n, i, j) private(k)
            for (k = 0; k < n; k++) {
                tmp += A[i*n+k] * B[k*n+j];
            }
            R[i*n+j] = tmp;
        }
    }
}
```

Correct w/ no speedup

```
== SERIAL ==
Nthreads= 1  TEST=pass  MULT=  0.1078

== PARALLEL ==
Nthreads= 1  TEST=pass  MULT=  0.2820
Nthreads= 2  TEST=pass  MULT=  0.4234
Nthreads= 4  TEST=pass  MULT=  0.4502
Nthreads= 8  TEST=pass  MULT=  0.6040
Nthreads=16  TEST=pass  MULT=  0.8390
```
Matrix access patterns

```c
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        #pragma omp parallel for default(none) shared(A,B,R,n,i) private(j,k)
        for (j = 0; j < n; j++) {
            R[i*n+j] = 0;
            for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```

Correct w/ speedup

```
== SERIAL ==
Nthreads= 1 TEST=pass  MULT=  0.1290

== PARALLEL ==
Nthreads= 1 TEST=pass  MULT=  0.2660
Nthreads= 2 TEST=pass  MULT=  0.1348
Nthreads= 4 TEST=pass  MULT=  0.0735
Nthreads= 8 TEST=pass  MULT=  0.0410
Nthreads=16 TEST=pass  MULT=  0.0380
```
void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 #pragma omp parallel for default(none) shared(A,B,R,n) private(i,j,k)
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

== SERIAL ==
Nthreads= 1 TEST=pass MULT= 0.1279

== PARALLEL ==
Nthreads= 1 TEST=pass MULT= 0.2530
Nthreads= 2 TEST=pass MULT= 0.1274
Nthreads= 4 TEST=pass MULT= 0.0698
Nthreads= 8 TEST=pass MULT= 0.0390
Nthreads=16 TEST=pass MULT= 0.0337

Correct w/ best speedup
(fewest fork/join operations)