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Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 8)

Various online sources, including github.com/donnemartin/system-design-primer



  

Desirable system properties

● We want dependable systems
– Available: ready for use at any given time
– Reliable: runs continuously without failure
– Safe: nothing catastrophic happens upon failure
– Maintainable: easy to repair
– Similar to definitions for dependable software (CS 345)



  

Problem

● Inherent tension between:
– Consistency: reads see previous writes ("safety")
– Availability: operations finish ("liveness")
– Partition tolerance: failures don't affect correctness

Systems design involves tradeoffs



  

CAP Theorem

● A system cannot be simultaneously consistent (C), 
available (A), and partition-tolerant (P)
– We can only have two of three
– In a non-distributed system, P isn't needed

● Tradeoff: latency vs. consistency ("PACELC Theorem")

– In a distributed system, P isn't optional
● Thus, we must choose: CP or AP
● I.e., consistency or availability

Original conjecture by Eric Brewer: http://dl.acm.org/citation.cfm?id=822436
Formal theorem: http://dl.acm.org/citation.cfm?id=564601
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Consistency

● Usual choice: compromise on consistency
– Strong consistency: reads see all previous writes 

(sequential consistency)
● Alternatively, continuous w/ short interval
● Causal consistency: reads see all causally-related writes

– Eventual consistency: reads eventually see all 
previous writes (continuous w/ long interval)

● E.g., "guaranteed convergence"

– Weak consistency: reads may not see previous writes 
● E.g., "best effort"



  

Availability

● Active-passive / master-slave (asymmetric)
– Master server handles all requests
– Backup/failover server takes over if master fails

● Active-active / master-master (symmetric)
– Multiple master servers share request load
– Load re-balances if one fails

Active-passive Active-active

Master Backup Load 
balancer

Server 1

Server 2



  

Fault tolerance

● Sometimes, consistency/availability tradeoff 
decisions depend on the failure model:
– What kinds of failures happen?
– How often do they happen?
– What are the effects of a failure?



  

Fault tolerance

● Soft vs hard failures
– Soft failure: a.k.a. silent data corruption (SDC)

● Often corrected by hardware

– Hard failure: a component of a system stops working
● Hard failures in a non-distributed system are usually fatal

– The entire system must be restarted
● Hard failures in a distributed system can be non-fatal

– Partial failure: a failure of a subset of the components of a 
distributed system

– If the system is well-designed, it may be able to recover and 
continue after a partial failure



  

Measuring failure

● Failure rate (λ): failures per unit of time
● Mean Time Between Failures (MTBF) = 1 / λ

– Assumes constant failure rate
● Failures In Time (FIT) = failures expected in one 

billion device-hours
– MTBF = 1e9 x 1/FIT

On a 10 million core machine, 1 FIT means once every 100 hours
or once every ~4.2 days!



  

Failure types

● Crash: the system halts
● Omission: the system fails to respond to requests
● Timing: the system responds too slowly
● Response: the system responds incorrectly
● Arbitrary failure: anything else (unpredictable!)

– Sometimes called "Byzantine" failures if they can 
manifest in such a way that prevents future consensus



  

Failures

● Some systems distinguish between failure levels:
– A failure occurs when a system cannot meet its specification
– An error is the part of a system's state that leads to a failure
– A fault is the low-level cause of an error
– Most common source of faults: memory or disk storage

● If a system can provide dependable services even in 
the presence of faults, that system is fault-tolerant



  

Faults

● Permanent faults reproduce deterministically
– These are usually the easiest to fix

● Intermittent faults recur but do not always reproduce 
deterministically
– Unfortunately common in distributed systems
– Heisenbug: a software defect that seems to change or 

disappear during debugging
● Transient faults occur only once

– Often the result of physical phenomena



  

Bit errors

● Bit error: low-level fault where a bit is read/written incorrectly
● Single-bit vs. double-bit vs. multi-bit

– Single-Bit Error (SBE), Double-Bit Error (DBE)
– Hamming distance: # of bits different

● Potential DRAM source: "weak bits" in hardware
– Electrons are stored in a memory cell capacitor

– Critical charge (Qcrit) is the threshold between 0 and 1 values

– Refreshed often, but sometimes still read incorrectly
● Radiation and cosmic rays



  

Example: GPU fault study

Tiwari, Devesh, et al. "Understanding gpu errors on large-scale hpc systems and the implications for system design and operation."
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 2015.
https://pdfs.semanticscholar.org/3b2c/8bb9471bd52a40b72a61bfede076f4d414b5.pdf

The Titan supercomputer
has 18,688 GPUs



  

Dealing with failure

● Detection: discovering failures
– Active (pinging) vs. passive (wait for messages)
– Issue: unreliability of timeouts

● Prevention: eliminate the possibility of failure
– Not possible in a distributed system

● Avoidance: divert around failure possibilities
– Only possible in particular circumstances

● Recovery: restore valid system state after a failure
– Forward error correction includes additional info for recovery



  

Detection and avoidance

● Data-centric
– Redundancy, diversity, and replication

● E.g., dual modular redundancy (DMR), TMR

– Parity bits, checksums, and hashes
● E.g., cyclic redundancy check (CRC), MD5, SHA

● Computation-centric
– Acknowledgement (ACK)-based protocols
– Consensus and voting protocols

● One-phase vs. two-phase (e.g., Paxos)



  

Recovery (hardware)

● Hardware (general space vs. safety tradeoff)
– Dual modular redundancy (DMR) can detect a single-bit error
– Triple modular redundancy (TMR) can recover one corrupted bit

● Or detect a double-bit error

– Parity bits
● Even parity bits are 0 if the # of 1s is even; 1 otherwise

– Special case of CRC (polynomial is x+1)
● Odd parity bits are 1 if the # of 1s is even; 0 otherwise

DMR:

 0 0  ok (value = 0)
 0 1  SBE
 1 0  SBE
 1 1  ok (value = 1)

TMR:

 0 0 0  ok (value = 0)
 0 0 1  SBE (value = 0) or DBE
 0 1 0  SBE (value = 0) or DBE
 0 1 1  SBE (value = 1) or DBE
 1 0 0  SBE (value = 0) or DBE
 1 0 1  SBE (value = 1) or DBE
 1 1 0  SBE (value = 1) or DBE
 1 1 1  ok (value = 1)



  

Recovery

● Hamming codes (often used in ECC memory) use parity bits
– Bit position 2i is a parity covering all bits with the (i+1)th least significant bit set
– Each bit is covered by a unique set of parity bits
– Error locations are identified by summing the positions of the faulty parity bits
– Can detect & recover SBEs (can be extended to detect DBEs)

● Reed-Solomon codes are more complex (but widely used)
– Function values or coefficients of a polynomial

Hamming code: parity bits and corresponding data bits
from https://en.wikipedia.org/wiki/Hamming_code



  

Recovery

● QR codes provide multiple recovery % options
– Four levels: L (7%), M (15%), Q (25%), H (30%)



  

Recovery

● Software level
– Log: record of operations (can enable recovery)
– Checkpoint: snapshot of current state

● Independent vs. coordinated checkpointing
● Standalone vs. incremental checkpointing
● Tradeoff: space vs. time (how much to save?)

– Restore: revert system state to a checkpoint
● May require replaying some calculations
● Can a checkpoint be restored on a different system?

– If so, how?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

