# CS 470 Spring 2019

Mike Lam, Professor







#### **Fault Tolerance**

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 8)

 $Various \ on line \ sources, \ including \ {\tt github.com/donnemartin/system-design-primer}$ 

## **Desirable system properties**

- We want dependable systems
  - Available: ready for use at any given time
  - Reliable: runs continuously without failure
  - Safe: nothing catastrophic happens upon failure
  - Maintainable: easy to repair
  - Similar to definitions for dependable software (CS 345)

## Problem

- Inherent tension between:
  - Consistency: reads see previous writes ("safety")
  - Availability: operations finish ("liveness")
  - Partition tolerance: failures don't affect correctness

#### Systems design involves tradeoffs

## **CAP** Theorem

- A system cannot be simultaneously consistent (C), available (A), and partition-tolerant (P)
  - We can only have two of three
  - In a non-distributed system, P isn't needed
    - Tradeoff: latency vs. consistency ("PACELC Theorem")
  - In a distributed system, P isn't optional
    - Thus, we must choose: CP or AP
    - I.e., consistency or availability



Original conjecture by Eric Brewer: http://dl.acm.org/citation.cfm?id=822436 Formal theorem: http://dl.acm.org/citation.cfm?id=564601

## Consistency

- Usual choice: compromise on consistency
  - Strong consistency: reads see all previous writes (sequential consistency)
    - Alternatively, continuous w/ short interval
    - Causal consistency: reads see all causally-related writes
  - Eventual consistency: reads eventually see all previous writes (continuous w/ long interval)
    - E.g., "guaranteed convergence"
  - Weak consistency: reads may not see previous writes
    - E.g., "best effort"

## Availability

- Active-passive / master-slave (asymmetric)
  - Master server handles all requests
  - Backup/failover server takes over if master fails
- Active-active / master-master (symmetric)
  - Multiple master servers share request load
  - Load re-balances if one fails



## Fault tolerance

- Sometimes, consistency/availability tradeoff decisions depend on the failure model:
  - What kinds of failures happen?
  - How often do they happen?
  - What are the effects of a failure?

## Fault tolerance

- Soft vs hard failures
  - Soft failure: a.k.a. silent data corruption (SDC)
    - Often corrected by hardware
  - Hard failure: a component of a system stops working
- Hard failures in a non-distributed system are usually fatal
  - The entire system must be restarted
- Hard failures in a distributed system can be non-fatal
  - Partial failure: a failure of a subset of the components of a distributed system
  - If the system is well-designed, it may be able to recover and continue after a partial failure

## **Measuring failure**

- Failure rate ( $\lambda$ ): failures per unit of time
- Mean Time Between Failures (MTBF) =  $1 / \lambda$ 
  - Assumes constant failure rate
- Failures In Time (FIT) = failures expected in one billion device-hours
  - MTBF = 1e9 x 1/FIT

On a 10 million core machine, 1 FIT means once every 100 hours or **once every ~4.2 days**!

## Failure types

- Crash: the system halts
- Omission: the system fails to respond to requests
- Timing: the system responds too slowly
- **Response**: the system responds incorrectly
- Arbitrary failure: anything else (unpredictable!)
  - Sometimes called "Byzantine" failures if they can manifest in such a way that prevents future consensus

## Failures

- Some systems distinguish between failure levels:
  - A failure occurs when a system cannot meet its specification
  - An error is the part of a system's state that leads to a failure
  - A fault is the low-level cause of an error
  - Most common source of faults: memory or disk storage
- If a system can provide dependable services even in the presence of faults, that system is fault-tolerant

#### Faults

- Permanent faults reproduce deterministically
  - These are usually the easiest to fix
- Intermittent faults recur but do not always reproduce deterministically
  - Unfortunately common in distributed systems
  - Heisenbug: a software defect that seems to change or disappear during debugging
- Transient faults occur only once
  - Often the result of physical phenomena

## **Bit errors**

- Bit error: low-level fault where a bit is read/written incorrectly
- Single-bit vs. double-bit vs. multi-bit
  - Single-Bit Error (SBE), Double-Bit Error (DBE)
  - Hamming distance: # of bits different
- Potential DRAM source: "weak bits" in hardware
  - Electrons are stored in a memory cell capacitor
  - Critical charge ( $Q_{crit}$ ) is the threshold between 0 and 1 values
  - Refreshed often, but sometimes still read incorrectly
- Radiation and cosmic rays

## Example: GPU fault study



The Titan supercomputer has 18,688 GPUs



Figure 3: Radiation test setup inside the ICE House II, Los Alamos Neutron Science Center (LANSC), LANL. A similar setup was used at ISIS, Didcot, UK.



Tiwari, Devesh, et al. "Understanding gpu errors on large-scale hpc systems and the implications for system design and operation." High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 2015. https://pdfs.semanticscholar.org/3b2c/8bb9471bd52a40b72a61bfede076f4d414b5.pdf

## **Dealing with failure**

- Detection: discovering failures
  - Active (pinging) vs. passive (wait for messages)
  - Issue: unreliability of timeouts
- Prevention: eliminate the possibility of failure
  - Not possible in a distributed system
- Avoidance: divert around failure possibilities
  - Only possible in particular circumstances
- **Recovery**: restore valid system state after a failure
  - Forward error correction includes additional info for recovery

## **Detection and avoidance**

- Data-centric
  - Redundancy, diversity, and replication
    - E.g., dual modular redundancy (DMR), TMR
  - Parity bits, checksums, and hashes
    - E.g., cyclic redundancy check (CRC), MD5, SHA
- Computation-centric
  - Acknowledgement (ACK)-based protocols
  - Consensus and voting protocols
    - One-phase vs. two-phase (e.g., Paxos)

## Recovery (hardware)

- Hardware (general space vs. safety tradeoff)
  - Dual modular redundancy (DMR) can detect a single-bit error
  - Triple modular redundancy (TMR) can recover one corrupted bit
    - Or detect a double-bit error
  - Parity bits
    - *Even* parity bits are 0 if the # of 1s is even; 1 otherwise
      - Special case of CRC (polynomial is x+1)
    - *Odd* parity bits are 1 if the # of 1s is even; 0 otherwise

| OMR:                                                           | TMR:                                                 |                                                                                                                                          |
|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0 0 ok (value = 0)<br>0 1 SBE<br>1 0 SBE<br>1 1 ok (value = 1) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <pre>ok (value = 0) SBE (value = 0) SBE (value = 0) SBE (value = 1) SBE (value = 0) SBE (value = 1) SBE (value = 1) ok (value = 1)</pre> |

or DBE or DBE or DBE or DBE or DBE

or DBE

#### Recovery

- Hamming codes (often used in ECC memory) use parity bits
  - Bit position  $2^i$  is a parity covering all bits with the (*i*+1)th least significant bit set
  - Each bit is covered by a unique set of parity bits
  - Error locations are identified by summing the positions of the faulty parity bits
  - Can detect & recover SBEs (can be extended to detect DBEs)
- Reed-Solomon codes are more complex (but widely used)
  - Function values or coefficients of a polynomial

| Bit positi    | on        | 1  | 2         | 3  | 4  | 5  | 6  | 7  | 8         | 9  | 10 | 11 | 12        | 13 | 14  | 15  | 16  | 17  | 18  | 19  | 20  |  |
|---------------|-----------|----|-----------|----|----|----|----|----|-----------|----|----|----|-----------|----|-----|-----|-----|-----|-----|-----|-----|--|
| Encoded dat   | ta bits   | p1 | <b>p2</b> | d1 | p4 | d2 | d3 | d4 | <b>p8</b> | d5 | d6 | d7 | <b>d8</b> | d9 | d10 | d11 | p16 | d12 | d13 | d14 | d15 |  |
| Parity<br>bit | p1        | х  |           | х  |    | х  |    | х  |           | x  |    | х  |           | х  |     | х   |     | х   |     | х   |     |  |
|               | p2        |    | х         | х  |    |    | х  | х  |           |    | х  | х  |           |    | х   | х   |     |     | х   | х   |     |  |
|               | p4        |    |           |    | х  | х  | X  | Х  |           |    |    |    | х         | х  | x   | х   |     |     |     |     | х   |  |
| coverage      | <b>p8</b> |    |           |    |    |    |    |    | х         | х  | х  | х  | х         | х  | х   | х   |     |     |     |     |     |  |
|               | p16       |    |           |    |    |    |    |    |           |    |    |    |           |    |     |     | х   | х   | х   | х   | х   |  |

Hamming code: parity bits and corresponding data bits

from https://en.wikipedia.org/wiki/Hamming\_code

#### Recovery

- QR codes provide multiple recovery % options
  - Four levels: L (7%), M (15%), Q (25%), H (30%)



## Recovery

- Software level
  - Log: record of operations (can enable recovery)
  - Checkpoint: snapshot of current state
    - Independent vs. coordinated checkpointing
    - Standalone vs. incremental checkpointing
    - Tradeoff: space vs. time (how much to save?)
  - Restore: revert system state to a checkpoint
    - May require replaying some calculations
    - Can a checkpoint be restored on a different system?
      - If so, how?