Naming

Content taken from the following:
“Distributed Systems: Principles and Paradigms” by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)
Various online sources (including openclipart.org)
Naming

• "What's in a name?"
 - "That which we call a .com by any other TLD would load just as quickly."

“There are only two hard things in Computer Science: cache invalidation and naming things.”

- Phil Karlton (Netscape)
Addressing

• Concept of an entity and its name vs. its address
• Some names are true identifiers
 – Each identifier refers to at most one entity
 – Each entity is referred to by at most one identifier
 – Identifiers are never re-used at another time
• Name-to-address binding
 – Name space: domain of all possible names
 – Static vs. dynamic
 – Central vs. decentralized
 • Name server: central host responsible for maintaining bindings
Naming schemes

```
/  
  eb40af8e  
  c6c1904c  
  0eced3a3e  
  28dec8ba  
  4b6683e7  
  88c9618b  
  3566223f  
  38b22b10  
  bin/  
    bash  
    etc/  
    passwd  
  usr/  
    bin/  
    nano  
    vim  
  lib/  

(444, Molloy)  
(446, Bernstein)  
(456, Weikle)  
(458, Heydari)  
(470, Lam)  
```

Flat Structured Attribute-based
Flat naming

- Identifiers contain no location information
- Various lookup approaches
 - Broadcast / multicast
 - Forwarding pointers
 - Proximity routing
- Examples: ARP, Chord
Distributed hash tables

- **Chord** uses an m-bit identifier space and modulo arithmetic
 - Key k is stored at succ(k), the node with the smallest id ≥ k
- Each node maintains a **finger table** of forward shortcuts
- To look up k, repeatedly follow lookups in finger table
 - Goal: halve distance to destination every hop
Structured naming

- **Root vs. leaf nodes**
- **Absolute vs. relative names**
 - Global vs. local names
- **Iterative vs. recursive resolution**
- **Linking and aliasing**
 - Hard vs. soft (symbolic) links
- **Mounting and mount points**
- **Examples**: file systems, DNS, NFS
IPv4

- **IPv4**: 32 bits - four octets w/ CIDR notation (/8, /16, etc.)
 - **Classful** addressing: Class A, Class B, Class C
 - IETF and IANA allocate addresses (32 bits - 4 billion total addresses)
 - Published in 1981; now nearly exhausted
- **Notable networks**
 - Private (10.0.0.0/8)
 - Loopback (127.0.0.0/8)
 - JMU (134.126.0.0/16)
 - Private (192.168.0.0/16)

An IPv4 address (dotted-decimal notation)

```
172  .  16  .  254  .  1
```

10101100 .00010000 .11111110 .00000001

One byte = Eight bits

Thirty-two bits (4 x 8), or 4 bytes

from https://en.wikipedia.org/wiki/IPv4
IPv4 map

from https://ant.isi.edu/address/browse/index.html
IPv6

- IPv6 published in 1998
 - 128 bits - 3.4×10^{38} total addresses
 - Eight groups of 16 bits (4 hex chars)
 - 64-bit routing prefix, 64-bit host/interface identifier
 - Slow uptake due to migration complications

The IPv6 name space is far larger than you think!

- In fact, there is NO WAY to draw the two address spaces to scale. If IPv4 were a 1.6-inch square, IPv6 would be a square the size of the solar system!
- $2^{128} \approx 10^{38} \gg (10^{25})$ or the number of stars in the observable universe (10^{23})
- “If we had been assigning IPv6 addresses at a rate of 1 billion per second since the earth was formed, we would have by now used up less than one trillionth of the address space.”
- “We could assign an IPv6 address to every atom on the surface of the earth – and have enough addresses left over for another hundred earths.”

Sources:
Attribute-based naming

- Human-friendly resource identifiers
- Storage of (key, value) pairs
- Often implemented with distributed hash tables
 - Centralized vs. decentralized lookups
 - You will implement this in P4!
- Semantic overlay networks
 - Nodes maintain links to "semantically proximate" nodes
 - Most useful in distributed peer-to-peer networks
 - Exploit small-world effect