CS 470
 Spring 2019

Mike Lam, Professor

$$
\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\ln \left(l_{1}\right) \\
\ln \left(l_{2}\right) \\
\ln \left(l_{3}\right) \\
\ln \left(l_{4}\right) \\
\ln \left(l_{5}\right) \\
\ln \left(l_{6}\right) \\
\ln \left(l_{7}\right)
\end{array}\right]=\left[\begin{array}{l}
\ln \left(r_{1,3,4}\right) \\
\ln \left(r_{1,3,5}\right) \\
\ln \left(r_{2,6}\right) \\
\ln \left(r_{2,7}\right)
\end{array}\right]
$$

A Tiny Bit of Linear Algebra
(i.e., just enough for P3)

Linear algebra

- Many scientific phenomena can be modeled as matrix operations
- Differential equations, mesh simulations, view transforms, etc.
- Many of these phenomena involve solving linear equations
- Doing this requires linear algebra and the manipulation of large matrices
- Very efficient on vector processors (including GPUs)
- Data decomposition and SIMD parallelism
- Popular packages: BLAS, LINPACK, LAPACK, ATLAS

$$
\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\ln \left(l_{1}\right) \\
\ln \left(l_{2}\right) \\
\ln \left(l_{3}\right) \\
\ln \left(l_{4}\right) \\
\ln \left(l_{5}\right) \\
\ln \left(l_{6}\right) \\
\ln \left(l_{7}\right)
\end{array}\right]=\left[\begin{array}{c}
\ln \left(r_{1,3,4}\right) \\
\ln \left(r_{1,3,5}\right) \\
\ln \left(r_{2,6}\right) \\
\ln \left(r_{2,7}\right)
\end{array}\right]
$$

Dense vs. sparse matrices

- A sparse matrix is one in which most elements are zero
- Could lead to more load imbalances
- Can be stored more efficiently, allowing for larger matrices
- Dense matrix operations no longer work
- It is a challenge to make sparse operations as efficient as dense operations

$$
\left(\begin{array}{ccccccc}
11 & 22 & 0 & 0 & 0 & 0 & 0 \\
0 & 33 & 44 & 0 & 0 & 0 & 0 \\
0 & 0 & 55 & 66 & 77 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 88 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 99
\end{array}\right)
$$

HPL benchmark

- HPL: LINPACK-based dense linear algebra benchmark
- Generates a linear system of equations "Ax = b" - O(n²)
- Chooses b such that x (answer vector) values are known
- Distributes dense matrix A in block-cyclic pattern - O(n)
- LU factorization - O(n³) (similar to Gaussian elimination)
- Backward substitution to solve system - O(n²)
- Error calculation to verify correctness - O(n)
- Compare max sustained FLOPS (floating-point operations per section)
- Usually significantly less than theoretical machine peak (Rmax vs Rpeak)
- Serves as proxy app for target workloads (similar characteristics)
- Used to rank world's fastest systems on the Top500 list twice each year
- Compiled on cluster
- Located in /shared/apps/hpl-2.1/bin/Linux_PII_CBLAS

P3 (OpenMP)

- Similar to HPL benchmark

1) Random generation of linear system (x should be all 1's)
2) Gaussian elimination
3) Backwards substitution (row- or column-oriented)

Non-random example

$$
\begin{aligned}
3 x+2 y-z & =1 \\
2 x-2 y+4 z & =-2 \\
-x+\frac{1}{2} y-z & =0
\end{aligned}
$$

Original system (Ax = b)

3.0	2.0	-1.0	1.0
0.0	-3.3	4.7	-2.7
0.0	0.0	0.3	-0.6

Upper triangular system

	3.0	2.0-1.0	1.0
	2.0	$-2.04 .0$	-2.0
Gaussian	-1.0	0.5-1.0	0.0
	Augmented matrix [A \| b]		
	1.0	0.00 .0	1.0
	0.	1.00 .0	-2.0
Backward substitution	0.	0.01 .0	-2.0
	Solved system		

Matrix representation

- 2D dense matrices in C
- Often stored in 1D arrays w/ access via array index arithmetic
- Trace data access patterns to determine dependencies
- Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
- Example (matrix multiplication):

```
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j=0;j< n; j++) {
        R[i*n+j] = 0;
        for (k = 0; k < n; k++) {
            R[i*n+j] += A[i*n+k] * B[k*n+j];
        }
        }
    }
}
```


Matrix representation

- 2D dense matrices in C
- Often stored in 1D arrays w/ access via array index arithmetic
- Trace data access patterns to determine dependencies
- Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
- Example (matrix multiplication):

```
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
        for (k = 0; k < n; k++) { {
        }
        }
    }
}
    read as R[i,j]
```

Matrix access patterns

```
void multiply_matrices(int *A, int *B, int *R, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
                                R[i*n+j] = 0;
        for (k = 0; k < n; k++) {
                R[i*n+j] += A[i*n+k] * B[k*n+j];
            }
        }
    }
}
```


