

CS 470
Spring 2019

Mike Lam, Professor

A Tiny Bit of Linear Algebra
(i.e., just enough for P3)

Linear algebra

● Many scientific phenomena can be modeled as matrix operations
– Differential equations, mesh simulations, view transforms, etc.
– Many of these phenomena involve solving linear equations
– Doing this requires linear algebra and the manipulation of large matrices

● Very efficient on vector processors (including GPUs)
– Data decomposition and SIMD parallelism
– Popular packages: BLAS, LINPACK, LAPACK, ATLAS

Dense vs. sparse matrices

● A sparse matrix is one in which most elements are zero
– Could lead to more load imbalances
– Can be stored more efficiently, allowing for larger matrices
– Dense matrix operations no longer work
– It is a challenge to make sparse operations as efficient as

dense operations

HPL benchmark

● HPL: LINPACK-based dense linear algebra benchmark
– Generates a linear system of equations “Ax = b” - O(n2)

● Chooses b such that x (answer vector) values are known

– Distributes dense matrix A in block-cyclic pattern - O(n)
– LU factorization - O(n3) (similar to Gaussian elimination)
– Backward substitution to solve system - O(n2)
– Error calculation to verify correctness - O(n)
– Compare max sustained FLOPS (floating-point operations per section)

● Usually significantly less than theoretical machine peak (Rmax vs Rpeak)

– Serves as proxy app for target workloads (similar characteristics)
● Used to rank world's fastest systems on the Top500 list twice each year

– Compiled on cluster
● Located in /shared/apps/hpl-2.1/bin/Linux_PII_CBLAS

P3 (OpenMP)

● Similar to HPL benchmark

1) Random generation of linear system (x should be all 1’s)

2) Gaussian elimination

3) Backwards substitution (row- or column-oriented)

 3.0 2.0 -1.0 1.0
 0.0 -3.3 4.7 -2.7
 0.0 0.0 0.3 -0.6

 3.0 2.0 -1.0 1.0
 2.0 -2.0 4.0 -2.0
-1.0 0.5 -1.0 0.0

 1.0 0.0 0.0 1.0
 0.0 1.0 0.0 -2.0
 0.0 0.0 1.0 -2.0

Original system (Ax = b) Augmented matrix [A | b]

Upper triangular system Solved system

Gaussian
elimination

Backward
substitution

Non-random example

Matrix representation

● 2D dense matrices in C
– Often stored in 1D arrays w/ access via array index arithmetic
– Trace data access patterns to determine dependencies
– Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
– Example (matrix multiplication):

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

Matrix representation

● 2D dense matrices in C
– Often stored in 1D arrays w/ access via array index arithmetic
– Trace data access patterns to determine dependencies
– Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
– Example (matrix multiplication):

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
} read as R[i,j]

Matrix access patterns

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

