CS 470 CUDA Lab
1. Log into a lab machine with a GPU and download the lab files using the following command:


wget w3.cs.jmu.edu/lam2mo/cs470/files/05_cuda.tar.gz
2. Extract the tarball and make sure the original version builds and runs. This program implements a vector “saxpy” operation (single precision a times x plus y) on several N-length vectors. Test it with several N values from 220 up to 224. Include the results in a comment at the top of the file. You will be doing this several times, so you may wish to write a shell script that automates the process.

NOTE: The program does not read N directly as a command-line parameter; it reads the shift value and does the calculation. This ensures that N will be a power of two, which will make the CUDA part of this lab easier.
3. Modify the Makefile to add a new optimized build target called saxpy_opt. It should build the same as the original executable except that you should also include the -O3 flag, which enables the most aggressive compiler optimization. Re-run your performance tests--what effect does this have on run times? Include the results and your description in the comment at the top of the file.

4. Modify the program to use OpenMP to parallelize the core initialization and saxpy routines (you do not need to parallelize the error calculation). Don’t over-complicate; you should only need to add ~5 lines of code to do this.

5. Modify the Makefile again and add a new build target called saxpy_omp. It should build the same as the saxpy_opt executable except that you should also include the -fopenmp flag to enable OpenMP. Re-run your performance tests--what effect does this have on run times, and how does it compare to the serial non-optimized and serial optimized results? Include the results and your description in the comment at the top of the file.

6. Copy saxpy.c to saxpy.cu and modify the Makefile to add a new build target called saxpy_cuda. It should build the same as the optimized serial executable (saxpy_opt) except it should use the NVIDIA CUDA compiler (nvcc) instead of the GNU compiler (gcc). Remove the OpenMP code. Make sure it builds and runs without errors before you proceed.

7. Port the code to CUDA so that it can take advantage of the GPU. This will involve the following actions:

a. Change the “x” and “y” array allocation and deallocation so that they are accessible on the GPU device.


HINT: Use unified memory to avoid having to copy the arrays back and forth (look up cudaMallocManaged).
b. Convert the saxpy routine to a CUDA kernel by adding the “__global__” designator and modifying the array accesses so that each thread handles different indices.


HINT: Follow the URL at the top of the code and look at the blog posts for hints (especially for the saxpy kernel).

HINT: Use a grid-stride loop to avoid complicated access patterns.
c. Launch the kernel in main instead of invoking the saxpy function directly. You should set the thread block size manually, and calculate the number of blocks based on the block size and the array size (N).

HINT: Due to how it is initialized, N will always be a power of two.
8. Once your CUDA version is working (verify that the max error is zero), re-run your performance tests. Try various thread block sizes (use powers of two); which block size works best? How do the CUDA results compare to the serial and OpenMP results? What does this imply about the value of a GPU as part of a hybrid parallel/distributed system? Under what circumstances would a GPU be desirable? Include the results and your analysis in the comment at the top of the file.

9. Submit your final saxpy.cu on Canvas. You do not need to submit saxpy.c. If you worked in groups, submit only a single copy of the file and make sure you include all names in a comment at the top.

YOU DO NOT NEED TO SUBMIT THIS DOCUMENT, ONLY THE SOURCE CODE WITH YOUR NAME(S), YOUR PERFORMANCE RESULTS, AND YOUR ANALYSIS IN A COMMENT AT THE TOP.
