
  

Warm-up question (CS 261 review)

● What is the primary difference between processes and 
threads from a developer’s perspective?
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MIMD system architectures

● Shared memory

● Distributed memory



  

Multithreading

● A process is an instance of a running program
– Private address space, shared files/sockets

● A thread is a single unit of execution in a process
– Private stack/registers, shared address space

● Multithreading libraries provide thread management
– Spawn/kill capabilities
– Synchronization mechanisms
– POSIX threads: Pthreads



  

POSIX threads

● Pthreads – POSIX standard interface for threads in C
– pthread_create: spawn a new thread

● pthread_t struct for storing thread info
● attributes (or NULL)
● thread work routine (function pointer)
● thread routine parameter (void*)

– pthread_self: get current thread ID
– pthread_exit: terminate current thread

● can also terminate implicitly by returning from the thread routine

– pthread_join: wait for another thread to terminate



  

Thread creation example

#include <stdio.h>
#include <pthread.h>

void* work (void* arg)
{
    printf("Hello from new thread!\n");
    return NULL;
}

int main ()
{
    printf("Spawning new thread ...\n");

    pthread_t peer;
    pthread_create(&peer, NULL, work, NULL);
    pthread_join(peer, NULL);

    printf("Done!\n");

    return 0;
}

main

create()

join()

peer

work()

main()



  

Shared memory

● Some data is shared in threaded programs
– Global variables (shared, single static copy)
– Local variables (multiple copies, one on each stack)

● Technically still shared if in memory, but harder to access
● Not shared if cached in register
● Safer to assume they're private

– Local static variables (shared, single static copy)



  

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

thread1 thread2

foo()



  

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

This interleaving is ok.

thread1 thread2

foo()

    irmovq x, %rcx
    irmovq 7, %rax

    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

    irmovq x, %rcx
    irmovq 7, %rax

    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret



  

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx
    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

x:
    .quad 0

PROBLEM!

thread1 thread2

foo()

    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx

    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret

    irmovq x, %rcx
    irmovq 7, %rax
    mrmovq (%rcx), %rdx

    addq %rax, %rdx
    rmmovq %rdx, (%rcx)
    ret



  

Issues with shared memory

● Nondeterminism
– Incorrect code can produce “correct” results
– Test suites cannot guarantee correctness!

● Data races
● Deadlock
● Starvation



  

Synchronization mechanisms

● Busy-waiting (wasteful!)
● Atomic instructions (e.g., LOCK prefix in x86)
● Pthreads

– Mutex: simple mutual exclusion (“lock”)
– Condition variable: lock + wait set (wait/signal/broadcast)
– Semaphore: access to limited resources

● Not technically part of Pthreads library (just the POSIX standard)

– Barrier: ensure all threads are at the same point
● Not present in all implementations (requires --std=gnu99 on cluster)

● Java threads
– Synchronized keyword: implicit mutex
– Monitor: lock associated w/ an object (wait/notify/notifyAll)



  

Mutexes

● pthread_mutex_init (pthread_mutex_t*, attrs)

– Initialize a mutex
● pthread_mutex_lock (pthread_mutex_t*)

– Acquire mutex (block if unavailable)
● pthread_mutex_unlock (pthread_mutex_t*)

– Release mutex
● pthread_mutex_destroy (pthread_mutex_t*)

– Clean up a mutex



  

Semaphores

● sem_init (sem_t*, pshared, int value)

– Initialize a semaphore to value
● sem_wait (sem_t*)

– If value > 0, decrement value and return
– Else, block until signaled

● sem_post (sem_t*)

– Increment value and signal a blocked thread
– Use a loop to signal multiple blocked threads

● sem_getvalue (sem_t*, int*)

– Return current value
● sem_destroy (sem_t*)

– Clean up a semaphore



  

Barrier w/ semaphores

Setup:
sem_t count_sem;     // initialize to 1 (access to waiting_threads)
sem_t barrier_sem;   // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads < thread_count) {
    sem_post(&count_sem);
    sem_wait(&barrier_sem);
} else {  // last thread to the barrier
    waiting_threads--;
    sem_post(&count_sem);
    while (waiting_threads--> 0) {
        sem_post(&barrier_sem);
    }
}

Issue: barrier_sem 
can’t be re-used later



  

Condition variables

● pthread_cond_init (pthread_cond_t*, attrs)

– Initialize a condition variable
● pthread_cond_wait (pthread_cond_t*, pthread_mutex_t*)

– Release mutex and block until signaled
– Re-acquires mutex after waking up
– A variant also exists that times out after a certain period

● pthread_cond_signal (pthread_cond_t*)

– Wake a single blocked thread
● pthread_cond_broadcast (pthread_cond_t*)

– Wake all blocked threads
● pthread_cond_destroy (pthread_cond_t*)

– Clean up a condition variable



  

Barrier w/ condition variable

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads < thread_count) {
    cond_wait(&done_waiting, &count_mut);
} else {  // last thread to the barrier
    waiting_threads = 0;
    cond_broadcast(&done_waiting);
}
mutex_unlock(&count_mut);



  

Barrier comparison
Semaphores Condition

Setup:
barrier_t barrier;    // initialize to nthreads

Threads:
barrier_wait(&barrier);

Barrier

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads < thread_count) {
    cond_wait(&done_waiting, &count_mut);
} else {  // last thread to the barrier
    waiting_threads = 0;
    cond_broadcast(&done_waiting);
}
mutex_unlock(&count_mut);

Setup:
sem_t count_sem;     // initialize to 1
sem_t barrier_sem;   // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads < thread_count) {
    sem_post(&count_sem);
    sem_wait(&barrier_sem);
} else {  // last thread to the barrier
    waiting_threads--;
    sem_post(&count_sem);
    while (waiting_threads--> 0) {
        sem_post(&barrier_sem);
    }
}



  

Condition variables

● Issue: POSIX standard says that pthread_cond_wait might experience 
spurious wakeups from sources other than signal/broadcast calls
– Goal: optimize runtime and force programmers to write correct code

while (pthread_cond_wait(&cond, &mut) != 0);

● Issue: non-determinism!
– Every condition should have an associated boolean predicate
– The predicate should be true before condition is signaled

e.g., “waiting_threads == nthreads”

– Waiting thread should re-check predicate after waking up
● Another thread may have invalidated it in the meantime!

– Best practice: use a predicate loop
while (!predicate) {

    pthread_cond_wait(&cond, &mut);

}



  

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false;    // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
    pthread_cond_wait(&cond, &mutex);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;
pthread_cond_signal(&cond);    // or pthread_cond_broadcast
pthread_mutex_unlock(&mutex);



  

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false;    // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
    pthread_cond_wait(&cond, &mutex);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;

– pthread_cond_signal(&cond);    // or pthread_cond_broadcast

pthread_mutex_unlock(&mutex);

initializer macros; 
can be used if you 
don’t need attributes

C keyword meaning “don’t optimize this 
variable; it could change at any time”

check predicate again!

set predicate

always acquire lock 
before wait, signal, or 
broadcast



  

Error checking

● All threading calls might return a non-zero value
– This generally indicates an error (except for cond_wait)
– Recovering from errors is not our primary concern now

● Although we’ll talk a bit about fault tolerance later this semester

– For now, just write a wrapper to abort on error
– Example:

void lock(pthread_mutex_t *mut)
{
    if (pthread_mutex_lock(mut) != 0) {
        printf("ERROR: could not acquire mutex\n");
        exit(EXIT_FAILURE);
    }
}



  

Common synchronization patterns

● Naturally (“embarrassingly”) parallel
– No synchronization!

● Mutual exclusion
– Use a lock to prevent simultaneous access

● Producer/consumer
– Protect common buffer w/ lock

● Readers/writers
– Multiple lock types

● Master/worker
– One producer, many consumers

● Dining philosophers
– Atomic acquisition of multiple locks



  

Master/worker model

● Common pattern: master/worker threads
– Original “master” thread creates multiple “worker” threads
– Each worker thread does a chunk of the work

● Coordinate via shared global data structure w/ locking

– Main thread waits for workers, then aggregates results

master

workers create

join



  

Thread pool model (P1)

● Minor tweak on master/worker: thread pool model
– Master thread creates multiple worker threads
– Work queue tracks chunks of work to be done

● Producer/consumer: master enqueues, workers dequeue
● Synchronization required
● Workers idle while queue is empty

master

workers

work queue

master worker

worker

worker



  

P1 pseudocode

master:

done = false
initialize work queue and sync variables
spawn worker threads

for each (action, num) pair in input:
if action == 'p':

add num to work queue
wake an idle worker thread

else if action == 'w':
wait num seconds

done = true
exhaust work queue and wait for workers to finish

print results, clean up, and exit

worker:

while not done or queue is not empty:
if queue is not empty:

extract num from work queue

update(num)

else:
become idle until awakened

NOT COMPLETE, 
AND NOT THE 
ONLY SOLUTION!



  

Synchronization granularity

● Granularity: level at which a structure is locked
– Whole structure vs. individual pieces
– If individual pieces, which pieces?
– Simple locks vs. read/write locks
– Tradeoff: coarse vs. fine-grained locks



  

Locality

● Temporal locality: frequently-accessed items will 
continue to be accessed in the future
– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to 
be accessed soon
– Theme: sequential access is common

● Why do we care?
– Shared-memory programs with good locality run faster 

than programs with poor locality



  

Caching effects

● Caching
– Keep frequently-used stuff in faster memory

● Cache line
– Single unit of cached data

● Cache hits/misses
– Was data in cache? (if so, hit; if not, miss)

● Cache invalidation
– Writes to one cache can render another cache out-of-date

● False sharing
– Unnecessary cache invalidation



  

Multithreading summary

● Shared memory parallelism has a lot of benefits
– Low overhead for thread creation/switching
– Uniform memory access times (symmetric multiprocessing)

● It also has significant issues
– Limited scaling (# of cores)
– Requires explicit thread management
– Requires explicit synchronization (HARD!)
– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity
– Higher granularity: simpler but slower
– Lower granularity: more complex but faster
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