

Warm-up question (CS 261 review)

● What is the primary difference between processes and
threads from a developer’s perspective?

CS 470
Spring 2019

Mike Lam, Professor

Multithreading & Pthreads

POSIX

MIMD system architectures

● Shared memory

● Distributed memory

Multithreading

● A process is an instance of a running program
– Private address space, shared files/sockets

● A thread is a single unit of execution in a process
– Private stack/registers, shared address space

● Multithreading libraries provide thread management
– Spawn/kill capabilities
– Synchronization mechanisms
– POSIX threads: Pthreads

POSIX threads

● Pthreads – POSIX standard interface for threads in C
– pthread_create: spawn a new thread

● pthread_t struct for storing thread info
● attributes (or NULL)
● thread work routine (function pointer)
● thread routine parameter (void*)

– pthread_self: get current thread ID
– pthread_exit: terminate current thread

● can also terminate implicitly by returning from the thread routine

– pthread_join: wait for another thread to terminate

Thread creation example

#include <stdio.h>
#include <pthread.h>

void* work (void* arg)
{
 printf("Hello from new thread!\n");
 return NULL;
}

int main ()
{
 printf("Spawning new thread ...\n");

 pthread_t peer;
 pthread_create(&peer, NULL, work, NULL);
 pthread_join(peer, NULL);

 printf("Done!\n");

 return 0;
}

main

create()

join()

peer

work()

main()

Shared memory

● Some data is shared in threaded programs
– Global variables (shared, single static copy)
– Local variables (multiple copies, one on each stack)

● Technically still shared if in memory, but harder to access
● Not shared if cached in register
● Safer to assume they're private

– Local static variables (shared, single static copy)

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

thread1 thread2

foo()

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

This interleaving is ok.

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

● Nondeterminism
● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

PROBLEM!

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

● Nondeterminism
– Incorrect code can produce “correct” results
– Test suites cannot guarantee correctness!

● Data races
● Deadlock
● Starvation

Synchronization mechanisms

● Busy-waiting (wasteful!)
● Atomic instructions (e.g., LOCK prefix in x86)
● Pthreads

– Mutex: simple mutual exclusion (“lock”)
– Condition variable: lock + wait set (wait/signal/broadcast)
– Semaphore: access to limited resources

● Not technically part of Pthreads library (just the POSIX standard)

– Barrier: ensure all threads are at the same point
● Not present in all implementations (requires --std=gnu99 on cluster)

● Java threads
– Synchronized keyword: implicit mutex
– Monitor: lock associated w/ an object (wait/notify/notifyAll)

Mutexes

● pthread_mutex_init (pthread_mutex_t*, attrs)

– Initialize a mutex
● pthread_mutex_lock (pthread_mutex_t*)

– Acquire mutex (block if unavailable)
● pthread_mutex_unlock (pthread_mutex_t*)

– Release mutex
● pthread_mutex_destroy (pthread_mutex_t*)

– Clean up a mutex

Semaphores

● sem_init (sem_t*, pshared, int value)

– Initialize a semaphore to value
● sem_wait (sem_t*)

– If value > 0, decrement value and return
– Else, block until signaled

● sem_post (sem_t*)

– Increment value and signal a blocked thread
– Use a loop to signal multiple blocked threads

● sem_getvalue (sem_t*, int*)

– Return current value
● sem_destroy (sem_t*)

– Clean up a semaphore

Barrier w/ semaphores

Setup:
sem_t count_sem; // initialize to 1 (access to waiting_threads)
sem_t barrier_sem; // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads < thread_count) {
 sem_post(&count_sem);
 sem_wait(&barrier_sem);
} else { // last thread to the barrier
 waiting_threads--;
 sem_post(&count_sem);
 while (waiting_threads--> 0) {
 sem_post(&barrier_sem);
 }
}

Issue: barrier_sem
can’t be re-used later

Condition variables

● pthread_cond_init (pthread_cond_t*, attrs)

– Initialize a condition variable
● pthread_cond_wait (pthread_cond_t*, pthread_mutex_t*)

– Release mutex and block until signaled
– Re-acquires mutex after waking up
– A variant also exists that times out after a certain period

● pthread_cond_signal (pthread_cond_t*)

– Wake a single blocked thread
● pthread_cond_broadcast (pthread_cond_t*)

– Wake all blocked threads
● pthread_cond_destroy (pthread_cond_t*)

– Clean up a condition variable

Barrier w/ condition variable

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads < thread_count) {
 cond_wait(&done_waiting, &count_mut);
} else { // last thread to the barrier
 waiting_threads = 0;
 cond_broadcast(&done_waiting);
}
mutex_unlock(&count_mut);

Barrier comparison
Semaphores Condition

Setup:
barrier_t barrier; // initialize to nthreads

Threads:
barrier_wait(&barrier);

Barrier

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads < thread_count) {
 cond_wait(&done_waiting, &count_mut);
} else { // last thread to the barrier
 waiting_threads = 0;
 cond_broadcast(&done_waiting);
}
mutex_unlock(&count_mut);

Setup:
sem_t count_sem; // initialize to 1
sem_t barrier_sem; // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads < thread_count) {
 sem_post(&count_sem);
 sem_wait(&barrier_sem);
} else { // last thread to the barrier
 waiting_threads--;
 sem_post(&count_sem);
 while (waiting_threads--> 0) {
 sem_post(&barrier_sem);
 }
}

Condition variables

● Issue: POSIX standard says that pthread_cond_wait might experience
spurious wakeups from sources other than signal/broadcast calls
– Goal: optimize runtime and force programmers to write correct code

while (pthread_cond_wait(&cond, &mut) != 0);

● Issue: non-determinism!
– Every condition should have an associated boolean predicate
– The predicate should be true before condition is signaled

e.g., “waiting_threads == nthreads”

– Waiting thread should re-check predicate after waking up
● Another thread may have invalidated it in the meantime!

– Best practice: use a predicate loop
while (!predicate) {

 pthread_cond_wait(&cond, &mut);

}

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false; // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
 pthread_cond_wait(&cond, &mutex);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;
pthread_cond_signal(&cond); // or pthread_cond_broadcast
pthread_mutex_unlock(&mutex);

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false; // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
 pthread_cond_wait(&cond, &mutex);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;

– pthread_cond_signal(&cond); // or pthread_cond_broadcast

pthread_mutex_unlock(&mutex);

initializer macros;
can be used if you
don’t need attributes

C keyword meaning “don’t optimize this
variable; it could change at any time”

check predicate again!

set predicate

always acquire lock
before wait, signal, or
broadcast

Error checking

● All threading calls might return a non-zero value
– This generally indicates an error (except for cond_wait)
– Recovering from errors is not our primary concern now

● Although we’ll talk a bit about fault tolerance later this semester

– For now, just write a wrapper to abort on error
– Example:

void lock(pthread_mutex_t *mut)
{
 if (pthread_mutex_lock(mut) != 0) {
 printf("ERROR: could not acquire mutex\n");
 exit(EXIT_FAILURE);
 }
}

Common synchronization patterns

● Naturally (“embarrassingly”) parallel
– No synchronization!

● Mutual exclusion
– Use a lock to prevent simultaneous access

● Producer/consumer
– Protect common buffer w/ lock

● Readers/writers
– Multiple lock types

● Master/worker
– One producer, many consumers

● Dining philosophers
– Atomic acquisition of multiple locks

Master/worker model

● Common pattern: master/worker threads
– Original “master” thread creates multiple “worker” threads
– Each worker thread does a chunk of the work

● Coordinate via shared global data structure w/ locking

– Main thread waits for workers, then aggregates results

master

workers create

join

Thread pool model (P1)

● Minor tweak on master/worker: thread pool model
– Master thread creates multiple worker threads
– Work queue tracks chunks of work to be done

● Producer/consumer: master enqueues, workers dequeue
● Synchronization required
● Workers idle while queue is empty

master

workers

work queue

master worker

worker

worker

P1 pseudocode

master:

done = false
initialize work queue and sync variables
spawn worker threads

for each (action, num) pair in input:
if action == 'p':

add num to work queue
wake an idle worker thread

else if action == 'w':
wait num seconds

done = true
exhaust work queue and wait for workers to finish

print results, clean up, and exit

worker:

while not done or queue is not empty:
if queue is not empty:

extract num from work queue

update(num)

else:
become idle until awakened

NOT COMPLETE,
AND NOT THE
ONLY SOLUTION!

Synchronization granularity

● Granularity: level at which a structure is locked
– Whole structure vs. individual pieces
– If individual pieces, which pieces?
– Simple locks vs. read/write locks
– Tradeoff: coarse vs. fine-grained locks

Locality

● Temporal locality: frequently-accessed items will
continue to be accessed in the future
– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to
be accessed soon
– Theme: sequential access is common

● Why do we care?
– Shared-memory programs with good locality run faster

than programs with poor locality

Caching effects

● Caching
– Keep frequently-used stuff in faster memory

● Cache line
– Single unit of cached data

● Cache hits/misses
– Was data in cache? (if so, hit; if not, miss)

● Cache invalidation
– Writes to one cache can render another cache out-of-date

● False sharing
– Unnecessary cache invalidation

Multithreading summary

● Shared memory parallelism has a lot of benefits
– Low overhead for thread creation/switching
– Uniform memory access times (symmetric multiprocessing)

● It also has significant issues
– Limited scaling (# of cores)
– Requires explicit thread management
– Requires explicit synchronization (HARD!)
– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity
– Higher granularity: simpler but slower
– Lower granularity: more complex but faster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

