

CS 470
Spring 2019

Mike Lam, Professor

Performance Analysis

Flame graph from brendangregg.com

Performance analysis

● Why do we parallelize our programs?
– So that they run faster!

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?
– Asymptotic analysis (e.g., for distributed sum)
– Empirical analysis

Empirical analysis issues

● How do you measure time-to-solution accurately?
– CPU cycles, OS clock "ticks", wall time, etc.

● How do you compare across systems?
– Differing CPUs, memories, OSes, etc.

● How do you compare against the original?
– 1-core parallel version will likely be slower

● How do you assess scalability?
– Does performance improve as you add cores?
– How do you quantify the improvement?
– Is there a limit to how far we can improve performance?

Best practices

● Measure wall time for specific code regions of interest
– Ignore startup and I/O time if not relevant
– Make sure you have a high-resolution timer!

● /usr/bin/time -v for whole programs
● gettimeofday() from sys/time.h for Pthreads
● omp_get_wtime() for OpenMP
● MPI_Wtime() for MPI

– Use barriers if necessary to make sure all
threads/processes have finished before you stop a timer

Best practices

● Control for variance
– Do all experiments on the same machine or cluster
– Maximum of one thread per core and one job per node

● Our cluster can support 8 threads per node (or 16 if hyper-
threading, but this is not always recommended)

– Run multiple trials and use minimum time
● Avoids OS interference or noise
● Use /shared/bin/hyperfine on cluster

– Track variance across trials to measure system noise
● If your variance is high or if your slowest and fastest time are

relatively far apart, it's probably noise!

Empirical analysis

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of processes

T S

T P

E = efficiency = =
S
p

T S

pT P

r = serial % of original program

S = speedup =
T S

(1−r)T S

p
+ r T S

T
P
 =

(1−r)T S

p
+ r T S

should
increase

as p grows

usually
decreases
as p grows

Amdahl's Law: S ≤ as p increases
1
r

Amdahl's Law

r = serial % of program
S = speedup =

T S

(1−r)T S

p
+ r T S

Amdahl's Law:

S ≤ as p increases1
r

p = # of processors

r = 10% → speedup limited to 10x

r = 5% → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely
proportionally by serial %

Scaling

● Generally, we don't care about any particular TP

– Or with how it compares to TS (except as a sanity check)

● More important: how TP , S, and E change as p increases

– And/or as the problem size increases
– Similar to asymptotic analysis in CS 240
– In general, a program is scalable if E remains fixed as p and the

problem size increase at fixed rates

– Most common: graph TP on y-axis vs. p on logarithmic x-axis

T
P

p

T
P

p

bad!good!

Scaling

● Strong scaling means we can keep the efficiency
fixed without increasing the problem size

● Weak scaling means we can keep the efficiency
fixed by increasing the problem size at the same
rate as the process/thread count
– Rate of work (e.g., Mop/s) per core remains roughly fixed

E = efficiency = =
S
p

T S

pT P

usually
decreases
as p grows

Scaling

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change (2x procs → half time)
– Sublinear (most common) / superlinear (exceedingly rare) speedup
– Be careful to interpret linear vs. logarithmic axes correctly

● Weak scaling: as p increases AND the problem size increases
proportionally, TP stays roughly the same

T
P

p (log)

T
P

p and p_size (log)

Strong
scaling

Weak
scaling

bad
bad

good
good

Cluster access

● Detailed instructions online:
w3.cs.jmu.edu/lam2mo/cs470/cluster.html

● Connect to login node via SSH
– Hostname: login.cluster.cs.jmu.edu

– User/password: (your e-ID and password)
● Recommended conveniences

– Set up public/private key access from stu

– Set up .ssh/config entries

– Install Spack for access to more software

http://w3.cs.jmu.edu/lam2mo/cs470/cluster.html

Cluster access

● Things to play with:
– "squeue" or "watch squeue" to see jobs

– "srun <command>" to run an interactive job
● Use “-n <p>” to launch p processes
● Use “-N <n>” to request n nodes (defaults to p/8)
● The given “<command>” will run in every process

– "salloc <command>" to run an interactive MPI job
● Must run "module load mpi" first
● Use “-n <p>” to launch p MPI processes

srun hostname
srun -n 4 hostname
srun -n 16 hostname
srun -N 4 hostname
srun sleep 5
srun -N 2 sleep 5

module load mpi
salloc -n 1 mpirun /shared/mpi-pi/mpipi
salloc -n 2 mpirun /shared/mpi-pi/mpipi
salloc -n 4 mpirun /shared/mpi-pi/mpipi
salloc -n 8 mpirun /shared/mpi-pi/mpipi
salloc -n 16 mpirun /shared/mpi-pi/mpipi
(etc.)

What’s the max n?

Job management

● SLURM (Simple Linux Utility for Resource Management) is a
piece of system software outside the OS (a.k.a. middleware)
that handles job submission and scheduling on our cluster

● An interactive job takes control of your terminal
– Run with srun or salloc
– You may interact with it (provide standard input, etc.)
– You also have to wait for it to finish
– Similar to a foreground shell job

● A batch job runs in the background without interaction
– Create a shell script and run it with sbatch
– Sends output to a file (named “slurm-JOBID.out” by default)

– Use squeue to check to see if it has finished

Batch jobs

● To run a batch job on the cluster, create a shell script
and run it with sbatch

● Bash example:

#!/bin/bash
#
#SBATCH --job-name=hostname
#SBATCH --nodes=1
#SBATCH --ntasks=1

<your commands go here>

Running experiments

● Common experimentation patterns in Bash:

run 5 times
for i in $(seq 1 5); do
 <cmd>
done

run common thread counts
for t in 1 2 4 8 16; do
 OMP_NUM_THREADS=$t <cmd>
done

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

