CS 470 Spring 2018

Mike Lam, Professor

Distributed Web and File Systems

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters 11 and 12) Various online sources

The "Internet"

- World Wide Web (WWW)
 - System for sharing information via hyperlinked documents
 - Started as a CERN project; now a massive distributed system built on a worldwide network (the "Internet")
- Issues:
 - Naming
 - Security
 - Consistency
 - Replication

Naming

- IPv4 and IPv6 addresses for hosts
- Uniform Resource Locator (URL)
 - Unique worldwide name of a document
 - Hierarchical domain + path
- Domain Name Service (DNS)
 - Distributed, hierarchical IP address lookup protocol

Security

- Secure Socket Layer (SSL) and Transport Layer Security (TLS)
 - Public-key authentication, symmetric end-to-end encryption
 - Certificate Authority (CA) provides centralized key checking
 - Examples: InCommon/Comodo, Symantec, and Let's Encrypt
- HyperText Transfer Protocol (HTTP)
 - Protocol for browser-server communication
 - Request and response model w/ headers and status codes
 - HTTPS is HTTP over SSL/TLS
- Common Gateway Interface (CGI)
 - Standardized program execution protocol
 - Somewhat similar to remote procedure calls (RPCs)
- Denial-of-Service (DoS) or Distributed DoS (DDoS) attacks
 - Often executed by botnets of virus-infected personal computers

Interchange formats

- The internet is a very heterogeneous distributed system
 - Exchanging information can be a challenge
- HyperText Markup Language (HTML)
 - Document format for WWW
- eXtensible Markup Language (XML)
 - Generalized HTML; generic data-interchange format
- Multipurpose Internet Mail Exchange (MIME)
 - Encoding formats for email messages
- Simple Object Access Protocol (SOAP)
 - Web services data format
- JavaScript Object Notation (JSON)
 - Lightweight data-interchange format

Consistency

- Content Delivery Networks (e.g. Akamai)
 - Globally-distributed network of proxy servers
 - Goal: improve data locality
 - Peer-to-peer and private CDNs
- Firefox / Chrome / Safari / IE / Edge
 - Graphical interface for HTTP connections
 - Often caches website components locally

Replication

- Apache Open-source extensible web server
 - LAMP: Linux, Apache, MySQL/MariaDB/MongoDB, PHP/Perl/Python
 - Other web servers: Nginx & Microsoft IIS
- Load balancing
 - Large websites require multiple servers w/ replicated data to provide availability to a massive number of users
 - Load balancers ensure that the traffic is distributed evenly

File systems

- File system: manages storage of structured data in files
- Export: a file system that is made available to another host
- Mount: link to a remote file system in the local file system
 - File systems table (fstab) configuration
 - Static vs. automatic mounting

/etc/fstab on cluster	/dev/mapper/rhel_login01-root /dev/mapper/rhel_login01-swap	/ swap	xfs swap	defaults defaults
	nfs.cluster.cs.jmu.edu:/nfs/home nfs.cluster.cs.jmu.edu:/nfs/scratch nfs.cluster.cs.jmu.edu:/nfs/shared	/nfs/home /scratch /shared	nfs nfs nfs	rw rw rw,acl

Distributed file systems

- Networked file system: centralized storage with export/mount sharing
- Distributed file system: distributed storage with communication protocol
- Centralized vs. decentralized
 - Asymmetric vs. symmetric
- Issues:
 - Naming
 - Security
 - Consistency
 - Replication

Naming

- Hierarchical file names
 - Filesystem Hierarchy Standard
- File descriptors / handles
 - Abstract identifier for an open file
 - In POSIX, positive integers:
 - Standard input: 0
 - Standard output: 1
 - Standard error: 2
- In distributed file systems:
 - Data-centric names
 - Location-centric names
 - Name servers (lookup) vs. file servers (access)

Security

- Authentication
 - UIDs, LDAP, Kerberos, Active Directory
- Access control (authorization)
 - Unix file permissions
 - Access control lists (e.g., POSIX)
 - Client vs. server permissions
- Encryption: security vs. performance tradeoff

Unix file permissions

Alice: read,write; Bob: read;

Access control list

Consistency

- Remote access vs. upload/download model
 - Closely related to replication issue

Remote access

Upload / download

Replication

- Client-side replication (caching)
 - Provides continued functionality while offline
 - Causes synchronization / consistency problems
 - Callback system for updating other clients
- Server-side replication (mirroring)
 - Provides fault tolerance
 - Striping: splitting a file's blocks across multiple servers
 - Can be counterproductive if writes are frequent

Network File System (NFS)

- Basic file sharing protocol for local networks
 - Based on remote procedure calls (RPCs)
 - Provides shared storage and reliability in presence of failures

Network File System (NFS)

- Developed by Sun in 1984
 - Originally an in-house solution (v.1), now an open standard
- NFSv2 released in 1989
 - UDP-based stateless protocol
 - No built-in locking
- NFSv3 released in 1995
 - 64-bit and TCP support
- NFSv4 released in 2000
 - Adds stateful protocol
 - Better access control
 - New security features (including encrypted traffic)
 - pNFS: scalable access to files distributed on multiple servers

Andrew File System (AFS)

- Developed at CMU
 - (Named after Andrew Carnegie and Andrew Mellon)
- Improved on NFS in terms of scalability and security
- Weak consistency model
 - Each file is locked when opened
 - Modifications are performed and buffered locally
 - Updates are only sent to the server when a file is closed
 - Server uses callbacks to update other clients
- Kerberos-based access control lists
 - Lookup / insert / delete / administer
 - Read / write / lock
- Heavily influenced development of NFSv4

NFSv4

- Access control lists
 - Type: A = allow, D = deny, U = audit, L = alarm
 - Flags: \mathbf{g} = group, \mathbf{d} = directory-inherit, \mathbf{f} = file-inherit
 - Permissions: \mathbf{r} = read, \mathbf{w} = write, \mathbf{a} = append, \mathbf{x} = execute, \mathbf{d} = delete
 - Permissions (cont.): **c** = read-ACL, **C** = write-ACL, **o** = write-owner
 - Policy of "default-deny"

A::OWNER@:rwatTnNcCy A::alice@nfsdomain.org:rxtncy A::bob@nfsdomain.org:rwadtTnNcCy A:g:GROUP@:rtncy D:g:GROUP@:waxTC A::EVERYONE@:rtncy D::EVERYONE@:waxTC

Google File System (GFS)

- Reliable asymmetric distributed file system on commodity hardware
 - Each file is split into chunks with unique chunk IDs (chunks can be replicated)
 - Master stores metadata tracking each file and its chunks (and where they are)
 - Basis for BigTable, backing store for the original MapReduce

Figure 11-5. The organization of a Google cluster of servers.

Lustre

- High-performance parallel file system
 - Initially a research project; later owned by Sun/Oracle
 - Now open source, maintained by a collection of organizations
 - Multiple lower-level interconnects: Ethernet, Infiniband
 - Used by many supercomputer installations
 - E.g., Sequoia and Titan
- Three functional units
 - Metadata server (MDS) names, layout, permissions
 - Object storage server (OSS) stores file data
 - Clients connect to servers

GPFS

- The General Parallel File System (GPFS) was developed by IBM and released in 1998
 - Re-branded as IBM Spectrum Scale in 2015
- Stripes file data across multiple servers
 - Reads and writes happen in parallel
 - Distributed metadata; no single point of failure
 - Includes availability and fault tolerance mechanisms
 - Provides full POSIX compatibility

Peer-to-peer file systems

- Characterized by direct communication between clients
 - Centralized (e.g., Napster) vs. decentralized (e.g., Bittorrent)
 - Anonymized (e.g., Freenet) via large-scale distributed caching with encryption and hash-based keys to locate data
- Raises many social and ethical issues
 - Censorship, activism, and free speech
 - Privacy and security
 - Illegal activity and law enforcement