Distributed Web and File Systems

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters 11 and 12)
Various online sources
The "Internet"

- **World Wide Web (WWW)**
 - System for sharing information via hyperlinked documents
 - Started as a CERN project; now a massive distributed system built on a worldwide network (the "Internet")

- **Issues:**
 - Naming
 - Security
 - Consistency
 - Replication
Naming

- **IPv4** and **IPv6** addresses for hosts
- **Uniform Resource Locator (URL)**
 - Unique worldwide name of a document
 - Hierarchical domain + path
- **Domain Name Service (DNS)**
 - Distributed, hierarchical IP address lookup protocol
Security

• **Secure Socket Layer (SSL) and Transport Layer Security (TLS)**
 - Public-key authentication, symmetric end-to-end encryption
 - **Certificate Authority (CA)** provides centralized key checking
 • Examples: InCommon/Comodo, Symantec, and Let's Encrypt

• **HyperText Transfer Protocol (HTTP)**
 - Protocol for browser-server communication
 - Request and response model w/ headers and status codes
 - **HTTPS** is HTTP over SSL/TLS

• **Common Gateway Interface (CGI)**
 - Standardized program execution protocol
 - Somewhat similar to remote procedure calls (RPCs)

• **Denial-of-Service (DoS) or Distributed DoS (DDoS) attacks**
 - Often executed by botnets of virus-infected personal computers
The internet is a very heterogeneous distributed system
- Exchanging information can be a challenge

HyperText Markup Language (HTML)
- Document format for WWW

eXtensible Markup Language (XML)
- Generalized HTML; generic data-interchange format

Multipurpose Internet Mail Exchange (MIME)
- Encoding formats for email messages

Simple Object Access Protocol (SOAP)
- Web services data format

JavaScript Object Notation (JSON)
- Lightweight data-interchange format
Consistency

- **Content Delivery Networks** (e.g. Akamai)
 - Globally-distributed network of proxy servers
 - Goal: improve data locality
 - Peer-to-peer and private CDNs
- **Firefox / Chrome / Safari / IE / Edge**
 - Graphical interface for HTTP connections
 - Often caches website components locally
Replication

- **Apache** - Open-source extensible web server
 - **LAMP**: Linux, Apache, MySQL/MariaDB/MongoDB, PHP/Perl/Python
 - Other web servers: **Nginx** & **Microsoft IIS**

- Load balancing
 - Large websites require multiple servers w/ replicated data to provide availability to a massive number of users
 - **Load balancers** ensure that the traffic is distributed evenly
File systems

- **File system**: manages storage of structured data in files
- **Export**: a file system that is made available to another host
- **Mount**: link to a remote file system in the local file system
 - File systems table (fstab) configuration
 - **Static vs. automatic** mounting

/etc/fstab on cluster

```
/dev/mapper/rhel_login01-root          /               xfs     defaults
/dev/mapper/rhel_login01-swap          swap            swap    defaults
nfs.cluster.cs.jmu.edu:/nfs/home       /nfs/home       nfs     rw
nfs.cluster.cs.jmu.edu:/nfs/scratch    /scratch        nfs     rw
nfs.cluster.cs.jmu.edu:/nfs/shared     /shared         nfs     rw,acl
```
Distributed file systems

- **Networked file system**: centralized storage with export/mount sharing
- **Distributed file system**: distributed storage with communication protocol
- **Centralized vs. decentralized**
 - Asymmetric vs. symmetric
- **Issues**:
 - Naming
 - Security
 - Consistency
 - Replication
Naming

• Hierarchical file names
 - Filesystem Hierarchy Standard

• File descriptors / handles
 - Abstract identifier for an open file
 - In POSIX, positive integers:
 • Standard input: 0
 • Standard output: 1
 • Standard error: 2

• In distributed file systems:
 - Data-centric names
 - Location-centric names
 - Name servers (lookup) vs. file servers (access)
Security

- **Authentication**
 - UIDs, LDAP, Kerberos, Active Directory

- **Access control** (authorization)
 - Unix file permissions
 - Access control lists (e.g., POSIX)
 - Client vs. server permissions

- **Encryption:** security vs. performance tradeoff

![Unix file permissions](image)

Alice: read, write;
Bob: read;

Access control list
Consistency

- Remote access vs. upload/download model
 - Closely related to replication issue
Replication

- Client-side replication (caching)
 - Provides continued functionality while offline
 - Causes synchronization / consistency problems
 - Callback system for updating other clients

- Server-side replication (mirroring)
 - Provides fault tolerance
 - Striping: splitting a file's blocks across multiple servers
 - Can be counterproductive if writes are frequent
Network File System (NFS)

- Basic file sharing protocol for local networks
 - Based on remote procedure calls (RPCs)
 - Provides shared storage and reliability in presence of failures

Figure 11-2. The basic NFS architecture for UNIX systems.

(from Tanenbaum and Van Steen (Ch.11))
Network File System (NFS)

- Developed by **Sun** in 1984
 - Originally an in-house solution (v.1), now an open standard
- **NFSv2** released in 1989
 - UDP-based **stateless** protocol
 - No built-in locking
- **NFSv3** released in 1995
 - 64-bit and TCP support
- **NFSv4** released in 2000
 - Adds **stateful** protocol
 - Better access control
 - New security features (including encrypted traffic)
 - pNFS: scalable access to files distributed on multiple servers
Andrew File System (AFS)

- Developed at CMU
 - (Named after Andrew Carnegie and Andrew Mellon)
- Improved on NFS in terms of scalability and security
- Weak consistency model
 - Each file is locked when opened
 - Modifications are performed and buffered locally
 - Updates are only sent to the server when a file is closed
 - Server uses callbacks to update other clients
- Kerberos-based access control lists
 - Lookup / insert / delete / administer
 - Read / write / lock
- Heavily influenced development of NFSv4
• Access control lists

 - Type: **A** = allow, **D** = deny, **U** = audit, **L** = alarm
 - Flags: **g** = group, **d** = directory-inherit, **f** = file-inherit
 - Permissions: **r** = read, **w** = write, **a** = append, **x** = execute, **d** = delete
 - Permissions (cont.): **c** = read-ACL, **C** = write-ACL, **o** = write-owner
 - Policy of "default-deny"

A::OWNER@:rwatTnNcCy
A::alice@nfsdomain.org:rxtncy
A::bob@nfsdomain.org:rwadTnNcCy
A:g:GROUP@:rtncy
D:g:GROUP@:waxTC
A::EVERYONE@:rtncy
D::EVERYONE@:waxTC
Google File System (GFS)

- Reliable asymmetric distributed file system on commodity hardware
 - Each file is split into chunks with unique chunk IDs (chunks can be replicated)
 - Master stores metadata tracking each file and its chunks (and where they are)
 - Basis for BigTable, backing store for the original MapReduce

Figure 11-5. The organization of a Google cluster of servers.

from Tanenbaum and Van Steen (Ch.11)
Lustre

- High-performance parallel file system
 - Initially a research project; later owned by Sun/Oracle
 - Now open source, maintained by a collection of organizations
 - Multiple lower-level interconnects: Ethernet, Infiniband
 - Used by many supercomputer installations
 - E.g., Sequoia and Titan

- Three functional units
 - Metadata server (MDS) – names, layout, permissions
 - Object storage server (OSS) – stores file data
 - Clients – connect to servers
The General Parallel File System (GPFS) was developed by IBM and released in 1998
 - Re-branded as IBM Spectrum Scale in 2015

Stripes file data across multiple servers
 - Reads and writes happen in parallel
 - Distributed metadata; no single point of failure
 - Includes availability and fault tolerance mechanisms
 - Provides full POSIX compatibility
Peer-to-peer file systems

- Characterized by direct communication between clients
 - Centralized (e.g., Napster) vs. decentralized (e.g., Bittorrent)
 - Anonymized (e.g., Freenet) via large-scale distributed caching with encryption and hash-based keys to locate data

- Raises many social and ethical issues
 - Censorship, activism, and free speech
 - Privacy and security
 - Illegal activity and law enforcement