

CS 470
Spring 2018

Mike Lam, Professor

Virtualization and Cloud Computing

Content taken from the following:

A. Silberschatz, P. B. Galvin, and G. Gagne. “Operating System Concepts, 9th Edition” (Chapter 16)

Various online sources

Problem

● Distributed systems are now ubiquitous
– It’s hard to provide any software service at a modern scale

from a single server
● (Although if you can, you SHOULD!)

– Most companies don’t need or want to manage their own
hardware

● High up-front costs, security vulnerabilities, etc.

Problem

● Distributed systems are now ubiquitous
– It’s hard to provide any software service at a modern scale

from a single server
● (Although if you can, you SHOULD!)

– Most companies don’t need or want to manage their own
hardware

● High up-front costs, security vulnerabilities, etc.

– Solution: abstraction!
● In particular, abstracting away the hardware

– Sometimes software too
● Usually referred to as virtualization

Virtualization

● Virtual environment: abstract machine (guest) implemented
on top of a physical machine (host)
– Requires some kind of interpretation layer

● Various goals
– Emulation: run programs designed for one architecture on another
– Isolation: run programs in a sandbox
– Scalability: spawn/destroy instances dynamically
– Automation: reduce tedium and mistakes during deployment
– Reproducibility: suspend/resume snapshots or configurations

Virtualization

● Various levels
– Circuits / CPU (microcode emulating machine code)
– Storage (e.g., RAID)
– Networks (e.g., NAT or overlays)
– Runtime environment (e.g., Java VM or Microsoft .NET)
– Full desktops (e.g., QEMU, VMware or VirtualBox)
– Operating system (e.g., Docker)

Hardware

Interpreter

Machine Code

Hardware

Host OS

Java Virtual Machine

Java
Program

Java
Program

Hardware

Host OS

VirtualBox

Virtual
Machine

Virtual
Machine

AppAppAppApp

Hardware

Host OS

Docker
Container

Docker
Container

AppAppAppApp

Hypervisors

● Native hypervisors (“type 1”)
– Run directly on the host’s hardware in kernel mode
– Sometimes as part of a general-purpose OS
– Examples: VMware ESX, Microsoft Hyper-V, Oracle VM Server, Xen

● Hosted hypervisors (“type 2”)
– Runs as a process inside the host OS
– Often hardware-accelerated (e.g., Intel VT-x or AMD-V)
– Examples: VMware Workstation, VirtualBox, QEMU
– Sometimes referred to as an emulator if it virtualizes an entirely different

architecture
● Example: Project 4 in CS 261 is a Y86-64 emulator for x86-64

Windows: 3.1, 95, and 10 on 8.1

Image courtesy of Mike Ripley (JMU Infrastructure and Database Support)

OS-level virtualization

● Container: isolated user space for a program and its
dependencies
– Multiple user spaces implemented at the kernel level
– Alternative viewpoints

● Virtual memory extended to files and libraries
● Sandboxed, lightweight, app-specific VMs that run natively (no guest OS)
● “Packages” for a single program's file system

– Portable: code in the container will run the same everywhere
– Performant: minimal overhead vs. running natively
– Examples: chroot, FreeBSD jail, Docker

Cloud computing

from https://en.wikipedia.org/wiki/Cloud_computing

● Infrastructure-as-a-service (IaaS)
– Cloud provider owns the hardware (servers and NAS)
– Clients provide virtual software images (VMware, Docker, etc.)
– Inherent scalability (including dynamic provisioning) and fault-tolerance
– Amazon EC2, Google Cloud, Microsoft Azure, Rackspace

Serverless computing

● Serverless computing
– Pay for compute time, not a particular host or VM
– FaaS: Function as a Service (another layer of abstraction!)
– There's still a server, but the user doesn't interact with it directly
– Code must be written using a supported language

https://aws.amazon.com/lambda/

Cloud engineering

● Emerging/developing field
– Combines computer system engineering (EE), software

engineering (CS), and computer information systems (business)
– Focus on IaaS/PaaS/SaaS/FaaS applications

● Often with a “big data” focus

– Goals: performance, scalability, security, reliability
– Challenge: integrating multiple solutions and layers
– First IEEE International Conference on Cloud Engineering

(IC2E) in March 2013

Thursday

● Cloud computing exercise
● Sign up for AWS account and apply for Educate credits:

– http://aws.amazon.com/

– https://aws.amazon.com/education/awseducate/

http://aws.amazon.com/
https://aws.amazon.com/education/awseducate/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

