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Virtualization and Cloud Computing

Content taken from the following:

A. Silberschatz, P. B. Galvin, and G. Gagne. “Operating System Concepts, 9th Edition” (Chapter 16)

Various online sources



  

Problem

● Distributed systems are now ubiquitous
– It’s hard to provide any software service at a modern scale 

from a single server
● (Although if you can, you SHOULD!)

– Most companies don’t need or want to manage their own 
hardware

● High up-front costs, security vulnerabilities, etc.
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– Solution: abstraction!
● In particular, abstracting away the hardware

– Sometimes software too
● Usually referred to as virtualization



  

Virtualization

● Virtual environment: abstract machine (guest) implemented 
on top of a physical machine (host)
– Requires some kind of interpretation layer

● Various goals
– Emulation: run programs designed for one architecture on another
– Isolation: run programs in a sandbox
– Scalability: spawn/destroy instances dynamically
– Automation: reduce tedium and mistakes during deployment
– Reproducibility: suspend/resume snapshots or configurations



  

Virtualization

● Various levels
– Circuits / CPU (microcode emulating machine code)
– Storage (e.g., RAID)
– Networks (e.g., NAT or overlays)
– Runtime environment (e.g., Java VM or Microsoft .NET)
– Full desktops (e.g., QEMU, VMware or VirtualBox)
– Operating system (e.g., Docker)
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Hypervisors

● Native hypervisors (“type 1”)
– Run directly on the host’s hardware in kernel mode
– Sometimes as part of a general-purpose OS
– Examples: VMware ESX, Microsoft Hyper-V, Oracle VM Server, Xen

● Hosted hypervisors (“type 2”)
– Runs as a process inside the host OS
– Often hardware-accelerated (e.g., Intel VT-x or AMD-V)
– Examples: VMware Workstation, VirtualBox, QEMU
– Sometimes referred to as an emulator if it virtualizes an entirely different 

architecture
● Example: Project 4 in CS 261 is a Y86-64 emulator for x86-64



  

Windows: 3.1, 95, and 10 on 8.1

Image courtesy of Mike Ripley (JMU Infrastructure and Database Support)



  

OS-level virtualization

● Container: isolated user space for a program and its 
dependencies
– Multiple user spaces implemented at the kernel level
– Alternative viewpoints

● Virtual memory extended to files and libraries
● Sandboxed, lightweight, app-specific VMs that run natively (no guest OS)
● “Packages” for a single program's file system

– Portable: code in the container will run the same everywhere
– Performant: minimal overhead vs. running natively
– Examples: chroot, FreeBSD jail, Docker



  

Cloud computing

from https://en.wikipedia.org/wiki/Cloud_computing

● Infrastructure-as-a-service (IaaS)
– Cloud provider owns the hardware (servers and NAS)
– Clients provide virtual software images (VMware, Docker, etc.)
– Inherent scalability (including dynamic provisioning) and fault-tolerance
– Amazon EC2, Google Cloud, Microsoft Azure, Rackspace



  

Serverless computing

● Serverless computing
– Pay for compute time, not a particular host or VM
– FaaS: Function as a Service (another layer of abstraction!)
– There's still a server, but the user doesn't interact with it directly
– Code must be written using a supported language

https://aws.amazon.com/lambda/



  

Cloud engineering

● Emerging/developing field
– Combines computer system engineering (EE), software 

engineering (CS), and computer information systems (business)
– Focus on IaaS/PaaS/SaaS/FaaS applications

● Often with a “big data” focus

– Goals: performance, scalability, security, reliability
– Challenge: integrating multiple solutions and layers
– First IEEE International Conference on Cloud Engineering 

(IC2E) in March 2013



  

Thursday

● Cloud computing exercise
● Sign up for AWS account and apply for Educate credits:

– http://aws.amazon.com/

– https://aws.amazon.com/education/awseducate/

http://aws.amazon.com/
https://aws.amazon.com/education/awseducate/
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