CS 470
Spring 2018

Mike Lam, Professor

Virtualization and Cloud Computing

Content taken from the following:

A. Silberschatz, P. B. Galvin, and G. Gagne. “Operating System Concepts, 9" Edition” (Chapter 16)
Various online sources

I Problem

 Distributed systems are now ubiquitous
- It’s hard to provide any software service at a modern scale
from a single server
* (Although if you can, you SHOULD!)

- Most companies don’t need or want to manage their own
hardware

* High up-front costs, security vulnerabilities, etc.

I Problem

* Distributed systems are now ubiquitous
- It's hard to provide any software service at a modern scale
from a single server
* (Although if you can, you SHOULD!)

- Most companies don’t need or want to manage their own
hardware

* High up-front costs, security vulnerabillities, etc.
— Solution: abstraction!

 In particular, abstracting away the hardware
- Sometimes software too
* Usually referred to as virtualization

I Virtualization

 Virtual environment: abstract machine (guest) implemented
on top of a physical machine (host)

- Requires some kind of interpretation layer
 Various goals
- Emulation: run programs designed for one architecture on another
- Isolation: run programs in a sandbox
- Scalablility: spawn/destroy instances dynamically

- Automation: reduce tedium and mistakes during deployment
- Reproducibility: suspend/resume snapshots or configurations

I Virtualization

e Various levels

— Circuits / CPU (microcode emulating machine code)
- Storage (e.g., RAID)
- Networks (e.g., NAT or overlays)
— Runtime environment (e.g., Java VM or Microsoft .NET)
- Full desktops (e.g., QEMU, VMware or VirtualBox)

- Operating system (e.g., Docker)

Machine Code

Java Java
Program Program

Interpreter

Java Virtual Machine

App | App

App | App

App | App | App | App

Hardware

Host OS

Docker
Container

Docker
Container

Virtual Virtual
Machine Machine

Hardware

Host OS

VirtualBox

Hardware

Host OS

Hardware

I Hypervisors

 Native hypervisors (“type 17"

- Run directly on the host’s hardware in kernel mode
- Sometimes as part of a general-purpose OS
- Examples: VMware ESX, Microsoft Hyper-V, Oracle VM Server, Xen

« Hosted hypervisors (“type 2”)

- Runs as a process inside the host OS
- Often hardware-accelerated (e.g., Intel VT-x or AMD-V)
- Examples: VMware Workstation, VirtualBox, QEMU

- Sometimes referred to as an emulator if it virtualizes an entirely different
architecture

* Example: Project 4 in CS 261 is a Y86-64 emulator for x86-64

Windows 3.1 [Running) - Oracle VM VirtualBox

- RN

“Fiic_Options_Window _lilp

Oracle VM VirtualBox Manager

=

System
el Farations,
peraer

K

Acoounts
WOLN SO00URES, STEa, Ty,
Wik, U picphi

A
-

Update & security
Windowt Update, recdiny,
backup

Win10 [Running] - Oracle YiM VirtualBos

Windows Settings

Denvacims
Euetooth, prnbers, mouse

{E\

Time & language
Spbech, negion, date

&

Metwork & Internet
Wi-Fi, srplane mode, VPR

®

Gaming
‘came bar, 0V,
Benpdcuting, G Moy

Personalization
Background, lck sorien
LS

-
¢ J,;,
“'-.-"

Ease of Acoess

Narrator, magnifuer, high
LonIrast

Ursrtall, defuules, aptional
features

&

Privacy

LOCINGn, Chmil

Image courtesy of Mike Ripley (JMU Infrastructure and Database Support)

I OS-level virtualization

* Container: isolated user space for a program and Its
dependencies
— Multiple user spaces implemented at the kernel level

- Alternative viewpoints

* Virtual memory extended to files and libraries
« Sandboxed, lightweight, app-specific VMs that run natively (no guest OS)
* “Packages” for a single program's file system

- Portable: code in the container will run the same everywhere
- Performant: minimal overhead vs. running natively
- Examples: chroot, FreeBSD jail, Docker

* Infrastructure-as-a-service (laaS)

Cloud provider owns the hardware (servers and NAS)

Clients provide virtual software images (VMware, Docker, etc.)
Inherent scalability (including dynamic provisioning) and fault-tolerance
Amazon EC2, Google Cloud, Microsoft Azure, Rackspace

Infra-
structure

Platform Application

Cloud Clients

Web browser, mobile app, thin client, terminal
emulator, ...

8

SaaS

CRM, Email, virtual desktop, communication,
games, ...

PaaS

Execution runtime, database, web server,
development tools, ...

laasS

Virtual machines, servers, storage, load
balancers, network, ...

from https://en.wikipedia.org/wiki/Cloud_computing

%

E@

Application

e B 9 &

Collaboration
Cor'tent Communication Finance:

R B T

Ohbject Storage

N =

Block Storage

Cloud computing

I Serverless computing

* Serverless computing

- Pay for compute time, not a particular host or VM

- FaaS: Function as a Service (another layer of abstraction!)

- There's still a server, but the user doesn't interact with it directly
— Code must be written using a supported language

__,

Upload your code to AWS
Lambda

AWS HTTP
SERVICES ENDPOINTS

MOBILE APPS

Set up your code to trigger from other AWS
sarvices, HTTF endpoints, orin-app activity

N

Lambda runs your code only when triggerad, Fay just for the compute time you use
wsing only the compute resources needed

https://aws.amazon.com/lambda/

I Cloud engineering

* Emerging/developing field
— Combines computer system engineering (EE), software
engineering (CS), and computer information systems (business)

- Focus on laaS/PaaS/SaaS/FaaS applications
e Often with a “big data” focus
- Goals: performance, scalability, security, reliability

- Challenge: integrating multiple solutions and layers

- First IEEE International Conference on Cloud Engineering
(IC2E) in March 2013

I Thursday

* Cloud computing exercise

* Sign up for AWS account and apply for Educate credits:

- http://aws.amazon.com/
- https://aws.amazon.com/education/awseducate/

http://aws.amazon.com/
https://aws.amazon.com/education/awseducate/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

