CS 470
Spring 2018

Mike Lam, Professor -

Fault Tolerance

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 8)
Various online sources, including github.com/donnemartin/system-design-primer

I Desirable system properties

* We want dependable systems

- Avallable: ready for use at any given time

- Reliable: runs continuously without failure

- Safe: nothing catastrophic happens upon failure

- Maintainable: easy to repailr

— Similar to definitions for dependable software (CS 345)

* Inherent tension between:
— Consistency: reads see previous writes ("safety")

— Availability: operations finish ("liveness")
- Partition tolerance: failures don't affect correctness

Can we “have it all?”

I Problem

* Which of the following iIs most important in a
distributed system?

- A. Consistency
- B. Availability
— C. Partition tolerance

I CAP Theorem

* A system cannot be simultaneously consistent (C),
available (A), and partition-tolerant (P)
- We can only have two of three

- In a non-distributed system, P isn't needed

* Tradeoff: latency vs. consistency ("PACELC Theorem")
- In a distributed system, P isn't optional

* Thus, we must choose: CP or AP

e |.e., consistency or availability e‘“
POSSIBLE!

Original conjecture by Eric Brewer: http://dl.acm.org/citation.cfm?id=822436
Formal theorem: http://dl.acm.org/citation.cfm?id=564601

I Problem

* Which of the following Is least important in a
distributed system?

- A. Consistency
- B. Availability
— C. Partition tolerance

I Consistency

* Usual choice: compromise on consistency
— Strong consistency: reads see all previous writes
(sequential consistency)

 Alternatively, continuous w/ short interval
e Causal consistency: reads see all causally-related writes

- Eventual consistency: reads eventually see all
previous writes (continuous w/ long interval)

* E.g., "guaranteed convergence"
- Weak consistency: reads may not see previous writes
* E.g., "best effort"

l Availability

* Active-passive [master-slave (asymmetric)
- Master server handles all requests
— Backup/failover server takes over if master fails
* Active-active [master-master (symmetric)

— Multiple master servers share request load
- Load re-balances if one falls

-'l -I'
- = m = iy —
5 5 Server 1
-'I M= N -'I // Loac;
: i:‘l Master Backup 5 -'I balancer 7
5 Server 2

Active-passive Active-active

l Availability

* The new JMU CS software mirror consists of two
servers mirroril and mirror2. At any given point, one

IS designated “primary” and handles all incoming
traffic. If it fails, the other server will take over as
primary. Which availability model is this closest to?

- A. Active-passive
- B. Active-active
- C. Passive-passive

I Fault tolerance

* Sometimes, consistency/availability tradeoff
decisions depend on the failure model:

- What kinds of failures happen?
- How often do they happen?
- What are the effects of a failure?

I Fault tolerance

* Soft vs hard failures
- Soft failure: data is corrupted (often corrected by hardware)
- Hard failure: a component of a system stops working

* Hard failures in a non-distributed system are usually fatal
- The entire system must be restarted

* Hard failures in a distributed system can be non-fatal

- Partial failure: a failure of a subset of the components of a
distributed system

- If the system is well-designed, it may be able to recover and
continue after a partial failure

I Fault tolerance

* A buffer overflow bug causes inadvertent data
corruption. What is this an example of? (select
all that apply)

- A. Soft failure
- B. Hard failure
- C. Partial failure

I Fault tolerance

* One of the JMU cluster nodes goes offline due
to a faulty power supply. What is this an
example of? (select all that apply)

- A. Soft failure
- B. Hard failure
- C. Partial failure

I Measuring failure

* Failure rate (A): failures per unit of time
 Mean Time Between Failures (MTBF) =1/ A

- Assumes constant failure rate

* Fallures In Time (FIT) = failures expected in one
billion device-hours

- MTBF = 1e9 x 1/FIT

I Measuring failure

* Failure rate (A): failures per unit of time
 Mean Time Between Failures (MTBF) =1/ A

- Assumes constant failure rate

* Fallures In Time (FIT) = failures expected in one
billion device-hours

- MTBF = 1e9 x 1/FIT

On a 10 million core machine, 1 FIT means once every 100 hours
or once every ~4.2 days!

I Measuring failure

* |f a JMU cluster hard drive dies on average
every 5 years, what is the failure rate?

- A. 0.05 failures/yr
- B. 0.2 failures/yr
- C. 0.5 failures/yr
- D. 2.0 failures/yr

- E. 5.0 failures/yr

I Failure types

* Crash: the system halts
* Omission: the system falls to respond to requests

Timing: the system responds too slowly
* Response: the system responds incorrectly

Arbitrary failure: anything else (unpredictable!)

- Sometimes called "Byzantine" failures if they can
manifest in such a way that prevents future consensus

I Failures

* Some systems distinguish between failure levels:

— Afallure occurs when a system cannot meet its specification
— An error Is the part of a system's state that leads to a failure
- Afault is the low-level cause of an error

— Most common source of faults: memory or disk storage

* |f a system can provide dependable services even in
the presence of faults, that system is fault-tolerant

I Faults

* Permanent faults reproduce deterministically
- These are usually the easiest to fix

* Intermittent faults recur but do not always reproduce
deterministically

— Unfortunately common in distributed systems

- Heisenbug: a software defect that seems to change or
disappear during debugging

* Transient faults occur only once
- Often the result of physical phenomena

I Faults

* Suppose there is a bug in one of your CS 361
projects that is a result of improper
synchronization, causing you to fail one of the
automated tests. However, it does not
reproduce in gdb. What kind of fault is this?

- A. Permanent
- B. Intermittent
— C. Transient

I Faults

* Suppose your roommate trips and falls,
accidentally hitting the switch on your surge
protector and causing your desktop to lose
power. What kind of fault is this?

- A. Permanent
- B. Intermittent
- C. Transient

I Bit errors

Bit error: low-level fault where a bit is read/written incorrectly

Single-bit vs. double-bit vs. multi-bit

— Single-Bit Error (SBE), Double-Bit Error (DBE)
- Hamming distance: # of bits different

Potential DRAM source: "weak bits" in hardware

- Electrons are stored in a memory cell capacitor
— Critical charge (Q) Is the threshold between 0 and 1 values

- Refreshed often, but sometimes still read incorrectly
Radiation and cosmic rays

I Cosmic rays

nano? REAL HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRANMMERS | | USE A MAGNETIZED REAL PROGRAMMERS
USE emacs USE vim. VSE ed. USE cat. NEEDLE AND A USE BUTTERFLIES.
1 H | | STEADY HAND.
J /
THE DISTURBANCE RIPPLES ~ WHICH ACT AS LENSES THAT NICE
THEYOPEN THEIR OUTWARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE. THERES AN EMACS
HANDS AND LET THE : AN
OF THE EDDY CURRENTS Rewys, FOCUSING THEM TO COMMAND TO DO THAT
DELICATEWINGS FLAPONCE:| | THE UPPER ATMOSPHERE. STRIKE THE DRIVE PLATTER . |
— == ANDFLP THE I.?Eﬁlﬁtn BIT. OH YEAH! GOOD QL
Cx T c M-botterfly.
% % f Tl
THESE CAUSE MONENTARY POCKETS
OF HIGHER-PRESSURE. AIRTO FORM, DATTUT, EMACS.

https://xkcd.com/378/

Example: GPU fault study

===Total GPU failures ==GPU off the bus error
+==*Double Bit Error (Xid 48) —ECC page retirement error (Xid 63, 64)
= Internal micro-controller halt (Xid 62) =—Video processor exception (Xid 65)
60
n 50
c
2 40
Ll
- S 30
. Q
The Titan supercomputer o 20
has 18,688 GPUs E |
z 10 ¢
5 D D R P |
m m m [22] o o m m [a0] m < . < < < < << < <
bRt T DR . o SR . (O B N B e M 0 B R R 8 R B
— — > = = oo g 2+ > o} = B = — > = r— 1)
© & =] & © o 3
s e S SlR S g o S g O s e S gl S Te
o
10.0%; e - 50
= - ALL GPU Failures GPU Off the Bus
& go% ! . — 40 Errors
—_ o
E T
o 6.0% £ 30 -
5 "
o 40% & 20
=8
Figure 3: Radiation test setup inside the ICE House I, Los *E 2.0% o 10
Alamos Neutron Science Center (LANSC), LANL. A 3
similar setup was used at ISIS, Didcat, UK. g 00% o 0 Al Distinct GPU
PO oo
4 * ki Cagel Cage 2 Cage 3 Occurences Cards

Time between two failures (in hours)

Tiwari, Devesh, et al. "Understanding gpu errors on large-scale hpc systems and the implications for system design and operation."
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 2015.

https://pdfs.semanticscholar.org/3b2c/8bb9471bd52a40b72a61bfede®76f4d414b5. pdf

Jll Dealing with failure

* Detection: discovering failures
— Active (pinging) vs. passive (wait for messages)
- Issue: unreliability of timeouts
* Prevention: eliminate the possibility of failure
— Not possible in a distributed system
* Avoidance: divert around failure possibilities
— Only possible in particular circumstances
Recovery: restore valid system state after a failure

I Detection and avoidance

e Data-centric

- Redundancy, diversity, and replication
* E.g., dual modular redundancy (DMR), TMR
- Parity bits, checksums, and hashes
* E.g., cyclic redundancy check (CRC), MD5, SHA

* Computation-centric

- Acknowledgement (ACK)-based protocols

- Consensus and voting protocols
* One-phase vs. two-phase (e.g., Paxos)

I Detection and avoidance

 How many total bits must be transmitted to
detect a single-bit error?

- Al
- B.2
- C.3
- D. 4
- E.S5

I Detection and avoidance

 How many total bits must be transmitted to
correct a single-bit error?

- Al
- B.2
- C.3
- D. 4
- E.S5

I Detection and avoidance

 How many total bits must be transmitted to
detect a double-bit error?

- Al
- B.2
- C.3
- D. 4
- E.S5

I Recovery (hardware)

 Hardware (general space vs. safety tradeoff)

- Dual modular redundancy (DMR) can detect a single-bit error

— Triple modular redundancy (TMR) can recover one corrupted bit
* Or detect a double-bit error
- Parity bits

* Even parity bits are O if the # of 1s is even; 1 otherwise
— Special case of CRC (polynomial is x+1)
* Odd parity bits are 1 if the # of 1s is even; O otherwise

DMR: TMR:
— 0 0 0 ok (value = 0)
0 6 ok (value = 0) ® 0 1 SBE (value = 0) or DBE
© 1 SBE ©1 0 SBE (value = ©) or DBE
1 0 SBE ® 1 1 SBE (value = 1) or DBE
1 1 ok (value = 1) 1 0 0 SBE (value = 0) or DBE
1 01 SBE (value = 1) or DBE
110 SBE (value = 1) or DBE
111 ok (value = 1)

I Recovery

* Hamming codes (often used in ECC memory) use parity bits
— Bit position 2/ is a parity covering all bits with the (i+1)th least significant bit set
— Each bit is covered by a unique set of parity bits
— Error locations are identified by summing the positions of the faulty parity bits
— Can detect & recover SBEs (can be extended to detect DBES)

* Reed-Solomon codes are more complex (but widely used)
— Function values or coefficients of a polynomial

b

Bit position 1 0 R | Sy | | TS S S | S o S 6 T | R | S S | 28

Encoded data bits p1 p2 di p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 di1 | p16 di2 di13 di14 di5

pl X X X X X X X X X X
Parity p2 X% X[X | X X X ||
bit p4 3 || S| el 165, 5 X
coverage mEm 3G (1K [t P ke | e |1
p16 X | e |l x|l x| X

Hamming code: parity bits and corresponding data bits

from https://en.wikipedia.org/wiki/Hamming_code

* QR codes provide multiple recovery % options
- Four levels: L (7%), M (15%), Q (25%), H (30%)

=
E35
| E7
I -
E13 :
H R B
_ E29
I
E34_|_E2? D24[" |D20
Iy i E S
W D7
—e12| es| lou 1
£40] &S _lndy
= _LJ_ _LJ_ |
C(E33] JEpe] (o210 o
E9 E2 D9 1
I _LJ_ H
el T [eba = [os |p1a
a7
ESE—LEES—LﬁiD | |]
D6 |D18| D1
elo| ' |es[ipaa
= [=

| I Fixed Patterns [J] Format Info
D: Data, E: Error Correction, X: Unused
Error Correction Level H is shown

Block 1 Codewords: D1-D13, E1-E22
Block 2 Codewords: D14-D26, E23-E44
Message Data: D1-D13, D14-D26

Bit order (1 is the most significant bit):

=
:; 7.6 B;E 8765
43 5 4 32 4 3
ahe | |32 : 2!y
1|
21 JT 1
4 3 :i 3.2 8,7 2;1
6|5 76 5 4 G5 4 3
ary J_ 876
a8
a8
Ti6 g
54_ 8
=2 1%
L 21

I Recovery

e Software level

- Log: record of operations (can enable recovery)

— Checkpoint: snapshot of current state

* Independent vs. coordinated checkpointing
* Standalone vs. incremental checkpointing
* Tradeoff: space vs. time (how much to save?)

- Restore: revert system state to a checkpoint

* May require replaying some calculations

* Can a checkpoint be restored on a different system?
- If so, how?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

