CS 470 Spring 2018

Mike Lam, Professor

$xXxMPI_360_NOSYNCxXx$

Naming

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4) Various online sources (including openclipart.org)

Naming

- "What's in a name?"
 - "That which we call a .com by any other TLD would load just as quickly."

Naming

- "What's in a name?"
 - "That which we call a .com by any other TLD would load just as quickly."

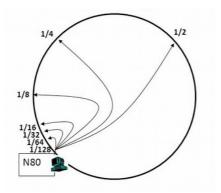
"There are only two hard things in Computer Science: cache invalidation and naming things."

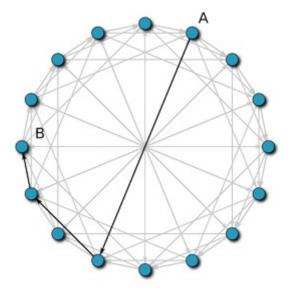
- Phil Karlton (Netscape)

Addressing

- Concept of an entity vs. its address
- True identifiers
 - Each identifier refers to at most one entity
 - Each entity is referred to by at most one identifier
 - Identifiers are never re-used at another time
- Name-to-address binding
 - Name space: domain of all possible names
 - Static vs. dynamic
 - Central vs. decentralized
 - Name server: central host responsible for maintaining bindings

Naming schemes

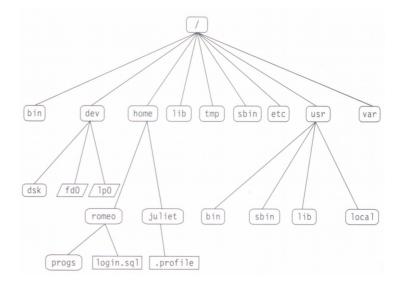

- Flat
- Structured
- Attribute-based

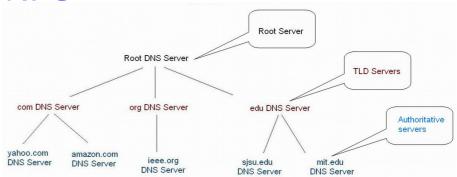

Flat naming

- Identifiers contain no location information
- Various lookup approaches
 - Broadcast / multicast
 - Forwarding pointers
 - Proximity routing
- Examples: ARP, Chord

Distributed hash tables

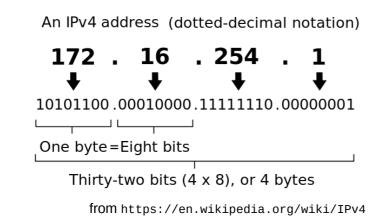
- Chord uses an m-bit identifier space and modulo arithmetic
- Key k is stored at succ(k), the node with the smallest id \geq k
- Each node maintains a finger table of forward shortcuts
- To look up k, repeatedly follow lookups in finger table
 - Goal: halve distance to destination every hop

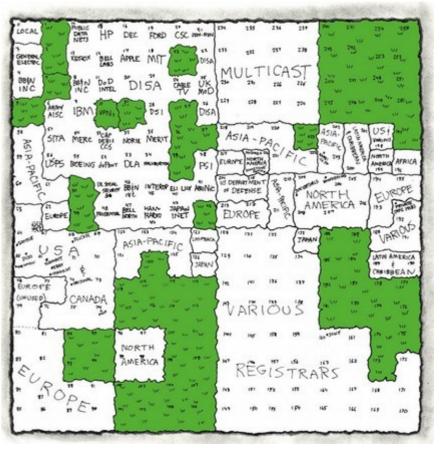




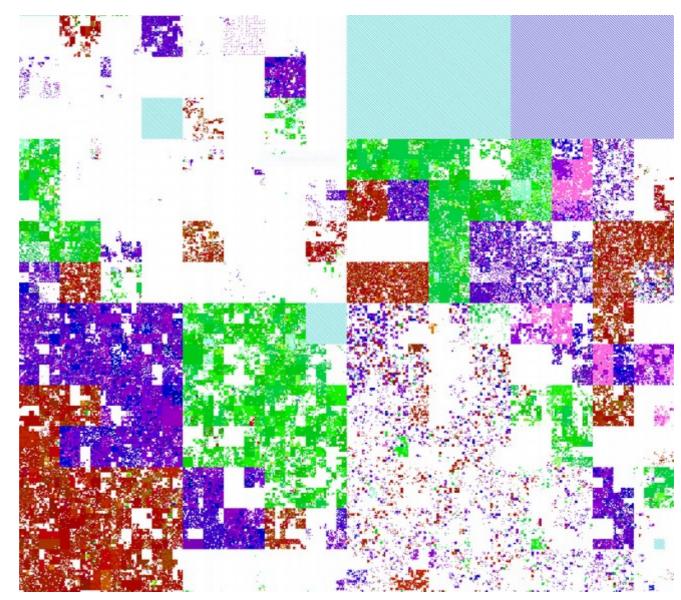
Structured naming

- Root vs. leaf nodes
- Absolute vs. relative names
 - Global vs. local names
- Iterative vs. recursive resolution
- Linking and aliasing
 - Hard vs. soft (symbolic) links
- Mounting and mount points
- Examples: file systems, DNS, NFS


Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/mapper/rhel_login01-root	50G	23G	28G	46%	/
/dev/sda6	497M	206M	292M	42%	/boot
nfs.cluster.cs.jmu.edu:/nfs/home	100G	4.6G	96G	5%	/nfs/home
nfs.cluster.cs.jmu.edu:/nfs/scratch	2.0T	862G	1.2T	43%	/scratch

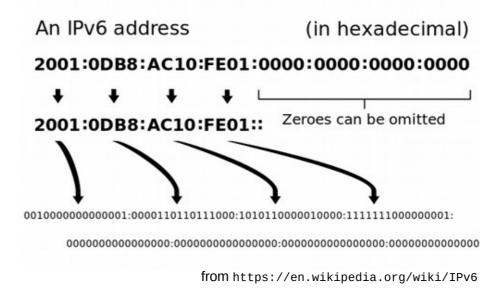


IPv4


- IPv4: 32 bits four octets w/ CIDR notation (/8, /16, etc.)
 - Classful addressing: Class A, Class B, Class C
 - IETF and IANA allocate addresses (32 bits 4 billion total addresses)
 - Published in 1981; now nearly exhausted
- Notable networks
 - Private (10.0.0/8)
 - Loopback (127.0.0.0/8)
 - JMU (134.126.0.0/16)
 - Private (192.168.0.0/16)

https://xkcd.com/195/

IPv4 map



from https://ant.isi.edu/address/browse/index.html

IPv6

- IPv6 published in 1998
 - 128 bits 3.4×10³⁸ total addresses
 - Eight groups of 16 bits (4 hex chars)
 - 64-bit routing prefix, 64-bit host/interface identifier
 - Slow uptake due to migration complications

IPv4 vs. IPv6

- The IPv6 name space is far larger than you think!
 - In fact, there is NO WAY to draw the two address spaces to scale. If IPv4 were a 1.6-inch square, IPv6 would be a square the size of the solar system!
 - $2^{128} \approx 10^{38}$ » the number of drops of water in all the world's oceans (10²⁵) or the number of stars in the observable universe (10²³)
 - "If we had been assigning IPv6 addresses at a rate of 1 billion per second since the earth was formed, we would have by now used up less than one trillionth of the address space."
 - "We could assign an IPv6 address to every atom on the surface of the earth – and have enough addresses left over for another hundred earths."

Sources:

- http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm
- http://www.brucebnews.com/2010/10/ipv6-and-really-large-numbers/

http://waitbutwhy.com/2014/11/1000000-grahams-number.html

Attribute-based naming

- Human-friendly resource identifiers
- Storage of (key, value) pairs
- Often implemented with distributed hash tables
 - Centralized vs. decentralized lookups
 - You will implement this in P4!
- Semantic overlay networks
 - Nodes maintain links to "semantically proximate" nodes
 - Most useful in distributed peer-to-peer networks
 - Exploit small-world effect