

CS 470
Spring 2018

Mike Lam, Professor

Networks

Content taken from IPP 2.3.3 and the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)

Various online sources (including openclipart.org)

Overview

● Topologies – how a network is arranged (hardware)
● Routing – how traffic navigates a network (hardware and software)
● Protocols – how machines communicate (software, low-level)
● IPC paradigms – how processes communicate (software, high-level)

Network topologies

● A topology is an arrangement of components or nodes
in a system

from https://en.wikipedia.org/wiki/Network_topology

Network topologies

● A topology is an arrangement of components or nodes
in a system
– Ring, star, line, and tree allow simultaneous connections

but disallow some pairs of point-to-point communication
– Fully connected and bus allow any-to-any communication

but do not scale well

Evaluating topologies

● Bandwidth: maximum rate at which a link can transmit data
– Throughput: measured rate of actual data transmission (usually less than bandwidth)

● Latency: time between start of send and reception of first data
● Diameter: maximum number of hops between nodes on a network
● Bisection: divide the network into two sections

– Bisection width: how many communications could happen simultaneously between the
two sections?

– Bisection bandwidth: what is the bandwidth between the sections?
● Important: how do these metrics scale as you add nodes?

Two different bisections of a network

Crossbar switches

● Switched interconnects allow
multiple simultaneous paths
between components
– (Graphically, use squares for nodes

and circles for switches)
● A crossbar switch uses a matrix

of potential connections to create
ad-hoc paths between nodes

Omega networks

● Omega network: crossbar of crossbars
– Each individual switch is a 2-by-2 crossbar

Butterfly networks

● Multi-stage network w/ dedicated switching nodes
– Easy routing based on binary host numbers (0=left, 1=right)

from https://en.wikipedia.org/wiki/Butterfly_network

HPC interconnects

● In an HPC system, the network is called an interconnect
– Common patterns: switched bus, mesh/torus, hypercube
– Connected via switches vs. connected directly

Toroidal Mesh

Our cluster (switched bus)

Hypercubes

● Inductive definition:
– 0-D hypercube: a single node
– n-D hypercube: two (n-1)-D hypercubes with connections

between corresponding nodes
● E.g., a 3-D hypercube contains two 2-D hypercubes

Fat trees

● Hierarchical tree-based topology
– Links near the root have a higher bandwidth

HPC Interconnect Technologies

● Ethernet: 10/100 Mbps – 100 Gbps
– Early versions used shared-medium coaxial cable
– Newer versions use twisted pair or fiber optic with hubs or switches

● InfiniBand (IB): 24-300 Gbps w/ 0.5μs latency
– Packet-based switched fabric
– Very loose API; more formal spec provided by OpenFabrics Alliance
– Used on many current high-performance clusters
– Vendors: Mellanox, Intel, and Oracle

● OmniPath
– New interconnect architecture by Intel; designed closely with Intel Phi
– "Layer 1.5" Link Transfer Protocol for reliable layer 2 transmission

Routing

● Circuit switching
– Paths are pre-allocated for an entire session
– All data is routed along the same path

● Packet switching
– Break data into independent, addressed packets
– Packets are routed independently

Routing

● Circuit switching
– Paths are pre-allocated for an entire session
– All data is routed along the same path
– Higher setup costs and fewer simultaneous communications
– Constant latency and throughput

● Packet switching
– Break data into independent, addressed packets
– Packets are routed independently
– No setup costs and no restriction on simultaneous communications
– Resiliency to network failures and changing conditions
– Variable (and often unpredictable) latency and throughput

Routing

Unicast
(one-to-one)

Anycast
(one-to-nearest)

Geocast
(one-to-proximate)

Multicast
(one-to-many)

Broadcast
(one-to-all)

from https://en.wikipedia.org/wiki/Routing#Delivery_schemes

IP multicast and Overlays

● IP multicast: technique for sending data to multiple
recipients over an IP network using UDP
– Group addressing (IGMP)
– Tree-based distribution

● Overlay: a network built on top of another network
– Distributed hash tables (e.g., Chord)
– XMPP – Jabber/Gtalk chat protocol
– Tor network

Chord

Tor network

● Overlay network for anonymity
● Onion routing: multiple layers of obfuscation

– At each layer, data is encrypted and sent to a random Tor relay
– Sequence of relays form a virtual circuit that is difficult to trace
– No single relay connects the source and destination directly

Networking principles

● Distributed system components are often unreliable
● How do we build a reliable network using unreliable hardware

and software?

Networking principles

● Distributed system components are often unreliable
● How do we build a reliable network using unreliable hardware

and software?
– Abstraction helps by hiding details where possible
– Protocols define well-structured communication patterns
– Layered / stacked protocols build on each other
– Each layer adds metadata to help solve a specific problem

● Another guiding principle: the end-to-end principle
– Application-specific functions ought to reside in the end hosts of a

network rather than in intermediary nodes whenever possible.

For more info:
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Networking protocols

● Routing: choosing a path through a network
● Datagram: self-contained, encapsulated package of data and

metadata capable of being routed
– Also called a frame: (layer 2), a packet (layer 3), or a segment (layer 4)

● Protocol: rules for exchanging data (often using datagrams)
● Checksums: data integrity verification mechanism

IPv4 header
(from https://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm)

Protocol design issues

● Connectionless vs. connection-oriented
– Is there a setup/teardown procedure required for

communication?

● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

● Persistent vs. transient communication

– Are messages stored by the middleware?

Protocol design issues

● Connectionless vs. connection-oriented
– Is there a setup/teardown procedure required for

communication?
– No setup costs vs. faster speed after connection

● Synchronous vs. asynchronous
– Does the sender block after sending?

● E.g., MPI_Ssend vs. MPI_Isend

– Easier to debug and verify vs. faster communication
● Persistent vs. transient communication

– Are messages stored by the middleware?
– Guaranteed delivery vs. simplicity of middleware

OSI model layers

1) Physical: Transmission of raw bits over a physical medium (Ethernet, 802.11)

2) Data link: Reliable transmission of frames between two nodes (FC, 802.11)

3) Network: Structured transmission on a multi-node network (IP, ICMP)

4) Transport: Reliable transmission on a multi-node network (TCP, UDP)

5) Session: Managed communication sessions (RPC, NFS)

6) Presentation: Encoding and conversion of data (HTML, XML, JSON)

7) Application: Application-level abstractions (FTP, HTTP, SSH, MPI)

IPC paradigms

● Inter-process communication (IPC)
– Message-passing

● Symmetric (SPMD) vs. asymmetric (differentiated hosts)

– Remote procedure calls
– Streaming-oriented

Berkeley / POSIX Sockets

● API for inter-process communication
– Originally designed for BSD
– Later evolved into a POSIX standard
– Often used for low-level TCP and UDP communication
– Hosts identified by address (usually IP) and port number
– Passes "messages" (packets) between hosts
– Can use Unix pipes if both endpoints are on a single host

Socket primitives

● Server
– Socket: Create a new endpoint
– Bind: Attach a local address to a socket
– Listen: Announce readiness for connections
– Accept: Block until a request arrives

● Client
– Connect: Attempt to establish a connection

● Server & client
– Write: Send data over a connection
– Read: Receive data over a connection
– Close: Destroy a connection

MPI (Message Passing Interface)

● MPI_Send

● MPI_Recv
● MPI_Bcast
● MPI_Scatter
● MPI_Gather
● MPI_Allgather
● MPI_Reduce
● MPI_Allreduce
● MPI_Alltoall

from https://computing.llnl.gov/tutorials/parallel_comp/

Remote Procedure Call (RPC)

● Key idea: transparency
– It should look like the procedure call is happening locally
– Similar in spirit to PGAS remote memory accesses
– Implement server / client stubs to handle the call

● Parameter marshalling
– Preparing parameters for transmission over a network

Asynchronous RPC

Data streams

● Stream-based communication
– Popular in "big data" applications like MapReduce

● Simple vs. complex (multiple substreams)
● Timing variations

– Asynchronous: no timing constraints
– Synchronous: maximum end-to-end delay
– Isochronous: maximum and minimum delay

QoS concerns

● Quality of Service (QoS)
– Minimum required bit rate (bandwidth)
– Maximum delay to set up a session
– Maximum end-to-end delay (latency)
– Maximum delay variance (jitter)
– Maximum round-trip delay
– Possibility of expedited forwarding
– Synchronization mechanisms
– Examples: MPEG-2, HLS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

