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Overview

● Topologies – how a network is arranged (hardware)
● Routing – how traffic navigates a network (hardware and software)
● Protocols – how machines communicate (software, low-level)
● IPC paradigms – how processes communicate (software, high-level)



  

Network topologies

● A topology is an arrangement of components or nodes 
in a system

from https://en.wikipedia.org/wiki/Network_topology



  

Network topologies

● A topology is an arrangement of components or nodes 
in a system
– Ring, star, line, and tree allow simultaneous connections 

but disallow some pairs of point-to-point communication
– Fully connected and bus allow any-to-any communication 

but do not scale well



  

Evaluating topologies

● Bandwidth: maximum rate at which a link can transmit data
– Throughput: measured rate of actual data transmission (usually less than bandwidth)

● Latency: time between start of send and reception of first data
● Diameter: maximum number of hops between nodes on a network
● Bisection: divide the network into two sections

– Bisection width: how many communications could happen simultaneously between the 
two sections?

– Bisection bandwidth: what is the bandwidth between the sections?
● Important: how do these metrics scale as you add nodes?

Two different bisections of a network



  

Crossbar switches

● Switched interconnects allow 
multiple simultaneous paths 
between components
– (Graphically, use squares for nodes 

and circles for switches)
● A crossbar switch uses a matrix 

of potential connections to create 
ad-hoc paths between nodes



  

Omega networks

● Omega network: crossbar of crossbars
– Each individual switch is a 2-by-2 crossbar



  

Butterfly networks

● Multi-stage network w/ dedicated switching nodes
– Easy routing based on binary host numbers (0=left, 1=right)

from https://en.wikipedia.org/wiki/Butterfly_network



  

HPC interconnects

● In an HPC system, the network is called an interconnect
– Common patterns: switched bus, mesh/torus, hypercube
– Connected via switches vs. connected directly

Toroidal Mesh

Our cluster (switched bus)



  

Hypercubes

● Inductive definition:
– 0-D hypercube: a single node
– n-D hypercube: two (n-1)-D hypercubes with connections 

between corresponding nodes
● E.g., a 3-D hypercube contains two 2-D hypercubes



  

Fat trees

● Hierarchical tree-based topology
– Links near the root have a higher bandwidth



  

HPC Interconnect Technologies

● Ethernet: 10/100 Mbps – 100 Gbps
– Early versions used shared-medium coaxial cable
– Newer versions use twisted pair or fiber optic with hubs or switches

● InfiniBand (IB): 24-300 Gbps w/ 0.5μs latency
– Packet-based switched fabric
– Very loose API; more formal spec provided by OpenFabrics Alliance
– Used on many current high-performance clusters
– Vendors: Mellanox, Intel, and Oracle

● OmniPath
– New interconnect architecture by Intel; designed closely with Intel Phi
– "Layer 1.5" Link Transfer Protocol for reliable layer 2 transmission



  

Routing

● Circuit switching
– Paths are pre-allocated for an entire session
– All data is routed along the same path

● Packet switching
– Break data into independent, addressed packets
– Packets are routed independently

 

 



  

Routing

● Circuit switching
– Paths are pre-allocated for an entire session
– All data is routed along the same path
– Higher setup costs and fewer simultaneous communications
– Constant latency and throughput

● Packet switching
– Break data into independent, addressed packets
– Packets are routed independently
– No setup costs and no restriction on simultaneous communications
– Resiliency to network failures and changing conditions
– Variable (and often unpredictable) latency and throughput



  

Routing

Unicast
(one-to-one)

Anycast
(one-to-nearest)

Geocast
(one-to-proximate)

Multicast
(one-to-many)

Broadcast
(one-to-all)

from https://en.wikipedia.org/wiki/Routing#Delivery_schemes



  

IP multicast and Overlays

● IP multicast: technique for sending data to multiple 
recipients over an IP network using UDP
– Group addressing (IGMP)
– Tree-based distribution

● Overlay: a network built on top of another network
– Distributed hash tables (e.g., Chord)
– XMPP – Jabber/Gtalk chat protocol
– Tor network

Chord



  

Tor network

● Overlay network for anonymity
● Onion routing: multiple layers of obfuscation

– At each layer, data is encrypted and sent to a random Tor relay
– Sequence of relays form a virtual circuit that is difficult to trace
– No single relay connects the source and destination directly



  

Networking principles

● Distributed system components are often unreliable
● How do we build a reliable network using unreliable hardware 

and software?



  

Networking principles

● Distributed system components are often unreliable
● How do we build a reliable network using unreliable hardware 

and software?
– Abstraction helps by hiding details where possible
– Protocols define well-structured communication patterns
– Layered / stacked protocols build on each other
– Each layer adds metadata to help solve a specific problem

● Another guiding principle: the end-to-end principle
– Application-specific functions ought to reside in the end hosts of a 

network rather than in intermediary nodes whenever possible.

For more info:
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf



  

Networking protocols

● Routing: choosing a path through a network
● Datagram: self-contained, encapsulated package of data and 

metadata capable of being routed
– Also called a frame: (layer 2), a packet (layer 3), or a segment (layer 4)

● Protocol: rules for exchanging data (often using datagrams)
● Checksums: data integrity verification mechanism

IPv4 header
(from https://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm)



  

Protocol design issues

● Connectionless vs. connection-oriented
– Is there a setup/teardown procedure required for 

communication?

    
● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

    
● Persistent vs. transient communication

– Are messages stored by the middleware?

    



  

Protocol design issues

● Connectionless vs. connection-oriented
– Is there a setup/teardown procedure required for 

communication?
– No setup costs vs. faster speed after connection

● Synchronous vs. asynchronous
– Does the sender block after sending?

● E.g., MPI_Ssend vs. MPI_Isend

– Easier to debug and verify vs. faster communication
● Persistent vs. transient communication

– Are messages stored by the middleware?
– Guaranteed delivery vs. simplicity of middleware



  

OSI model layers

1) Physical: Transmission of raw bits over a physical medium (Ethernet, 802.11)

2) Data link: Reliable transmission of frames between two nodes (FC, 802.11)

3) Network: Structured transmission on a multi-node network (IP, ICMP)

4) Transport: Reliable transmission on a multi-node network (TCP, UDP)

5) Session: Managed communication sessions (RPC, NFS)

6) Presentation: Encoding and conversion of data (HTML, XML, JSON)

7) Application: Application-level abstractions (FTP, HTTP, SSH, MPI)



  

IPC paradigms

● Inter-process communication (IPC)
– Message-passing

● Symmetric (SPMD) vs. asymmetric (differentiated hosts)

– Remote procedure calls
– Streaming-oriented



  

Berkeley / POSIX Sockets

● API for inter-process communication
– Originally designed for BSD
– Later evolved into a POSIX standard
– Often used for low-level TCP and UDP communication
– Hosts identified by address (usually IP) and port number
– Passes "messages" (packets) between hosts
– Can use Unix pipes if both endpoints are on a single host



  

Socket primitives

● Server
– Socket: Create a new endpoint
– Bind: Attach a local address to a socket
– Listen: Announce readiness for connections
– Accept: Block until a request arrives

● Client
– Connect: Attempt to establish a connection

● Server & client
– Write: Send data over a connection
– Read: Receive data over a connection
– Close: Destroy a connection



  

MPI (Message Passing Interface)

● MPI_Send

● MPI_Recv
● MPI_Bcast
● MPI_Scatter
● MPI_Gather
● MPI_Allgather
● MPI_Reduce
● MPI_Allreduce
● MPI_Alltoall

from https://computing.llnl.gov/tutorials/parallel_comp/



  

Remote Procedure Call (RPC)

● Key idea: transparency
– It should look like the procedure call is happening locally
– Similar in spirit to PGAS remote memory accesses
– Implement server / client stubs to handle the call

● Parameter marshalling
– Preparing parameters for transmission over a network



  

Asynchronous RPC



  

Data streams

● Stream-based communication
– Popular in "big data" applications like MapReduce

● Simple vs. complex (multiple substreams)
● Timing variations

– Asynchronous: no timing constraints
– Synchronous: maximum end-to-end delay
– Isochronous: maximum and minimum delay



  

QoS concerns

● Quality of Service (QoS)
– Minimum required bit rate (bandwidth)
– Maximum delay to set up a session
– Maximum end-to-end delay (latency)
– Maximum delay variance (jitter)
– Maximum round-trip delay
– Possibility of expedited forwarding
– Synchronization mechanisms
– Examples: MPEG-2, HLS
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