CS 470
Spring 2018

Mike Lam, Professor

;. 0 ()
2. 0, %o 7 Q
(@) ¢ 7, 01 Al
0} ?. 0, 0 010

AQ
0 (\
%07,, 1110010101110
070101110110110

700101111011001

Q 0
07070 70100101
0
701010191010

%

Parallel Algorithm Development
(Foster's Methodology)

Graphics and content taken from IPP section 2.7 and the following:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

I Parallel program development

* Writing efficient parallel code is hard

* We've covered two generic paradigms ...
- Shared-memory
— Distributed message-passing
* ... and three specific technologies
- Pthreads
- OpenMP
- MPI

* Given a problem, how do we approach the development of
a parallel program that solves it?

I Method vs. methodology

* Method: a systematic process or way of doing a task

* Methodology: analysis of methods relevant to a discipline
- Literally: "the study of methods"
— Goal: guidelines or best practices for a class of methods
* Parallel algorithms
— There is no single method for creating efficient parallel algorithms

- However, there are some good methodologies that can guide us
- We will study one: Foster's methodology

I Foster's methodology

Task: executable unit along with local memory and 1/O ports

Channel: message queue connecting tasks' input and output ports

Drawn as a graph, tasks are vertices and channels are edges

Steps:

1) Partitioning

2) Communication
3) Agglomeration
4) Mapping

k= “-| Partitioning
~~ Problem /,.- —

—

(

Channel

O O

Task 1 Task 2

Mapping

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

EREEFRS
ONONONG)
0
S e GEORD Communication
SRR RS
SHGEGRS

Primitive Tasks

AgglomfimtiO/n

http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Partitioning

* Goal: discover as much parallelism as possible

* Divide computation into as many primitive tasks as
possible

- Avoid redundant computation
- Primitive tasks should be roughly the same size

- Number of tasks should increase as the problem size
Increases

* This helps ensure good scaling behavior

- Break tasks into segments of various granularities by data

 Domain ("data") decomposition

* Functional ("task") decomposition

— Separation by task type

- Domain/data decomposition can often be used inside of
Individual tasks

O —f-
data
P1 P2

=

Land/Surface Model

Pipelined Non-pipelined

I Communication

* Goal: minimize overhead
* |dentify which tasks must communicate and how

- Local (few tasks) vs. global (many tasks)
— Structured (regular) vs. unstructured (irregular)
— Prefer local, structured communication

— Tasks should perform similar amounts of communication
* This helps with load balancing
— Communication should be concurrent wherever possible

* Examples of local communication

ALY

SNL)
S

ﬂ.oﬂ.«h

¥ O
R
)7
S

L7
,ah.r QW._..“Q“

O

L]
O

]

Unstructured

Structured

* Examples of global communication:

Processes o

Structured Unstructured

I Agglomeration

* Goal: Reduce messages and simplify programming

 Combine tasks into groups, increasing locality

— Groups should have similar computation and
communication costs

— Task counts should still scale with processor count and /
or problem size

- Minimize software engineering costs
* Agglomeration can prevent code reuse

* Examples:

o /o\

/g\ —)> 7’\ g

\
.
I
¢
.'
2

.

cs’og ?‘b 5 .

Agglomeration of four local tasks Agglomeration of tree-based tasks

I Mapping

Goal: minimize execution time

- Alternately: maximize processor utilization
— On a distributed system: minimize communication

Assign tasks (or task groups) to processors/nodes
- Block vs. cyclic

— Static vs. dynamic
Strategies:
- 1) Place concurrent tasks on different nodes

- 2) Place frequently-communicating tasks on the same node
Problem: these strategies are often in conflict!

— The general problem of optimal mapping is NP-complete

............

* Examples:

::::::::::::

............

Block mapping

Dynamic mapping

Cyclic mapping

I Boundary Value Problem

 Problem

— General statement. Determine the temperature changes in a thin
cylinder of uniform material with constant-temperature boundary
caps over a given time period, given the size of the cylinder and its
initial temperature

— General solution: solve partial differential equation(s)
» Often too difficult or expensive to solve analytically

- Approximate solution: finite difference method
* Discretize space (1d grid) and time (ms)

* Goal: Parallelize this solution, using Foster's
methodology as a guide

I Boundary Value Problem

Partitioning:

Make each T(x,t) computation a primitive task.
= 2-dimensional domain decomposition

ta

I Boundary Value Problem

ommunication:

OO ONONG

GGG C

GO

S eiaeis

AL AL AL

Sasssasa

S eisaes
&

G-

O O O 0O C

I Boundary Value Problem

Agglomeration:

®

ONONONON

/-

f
N

N

\

v

\

O

_/

efeflefof

-

Agglomeration:

0QOQoaoaguao

Mapping:

SEOBO

I Finding a maximum

* Problem: Determine the maximum value among
some large set of given values

— Special case of a reduction

* Goal: Parallelize this solution, using Foster's
methodology as a guide

I Finding a maximum

* Partitioning: each value is a primitive task

- (1d domain decomposition)
— One task (root) will compute final solution

 Communication: divide-and-conquer

- Root task needs to compute max after n-1 tasks
- Keep splitting the input space in half

* Binomial tree with n = 2k nodes
- (remember merge sort in P27?)

Recursive
definition: O

o 84T BT

B4

I Finding a maximum

Agglomeration:

Group n leafs of the tree:

ot o)
A%

The same (actually, in the agglomeration phase, use n such that you end
up with p tasks).

Mapping:

I Random number generation

* Goal: Generate psuedo-random numbers in a distributed way

* Problem: We wish to retain some notion of reproducibility

- In other words: results should be deterministic, given the RNG seed

- This means we can't depend on the ordering of distributed
communications

* Problem: We wish to avoid duplicated series of generated
numbers

— This means we can't just use the same generator in all processes

I Random number generation

 Nalve solution:

— Generate all numbers on one node and scatter them (a la P2)
- Too slow!

e Can we do better? (Foster's)

— Generating each random number is a task

- Channels between subsequent numbers from the same seed
- Tweak communication & agglomeration

- Minimize dependencies

Ly

Goal: Ry 1
Uniform o
randomness and /o(: \o\
reproducibility VNN
/O O\ O\ N
. o . R
™~ R’

RH

ar Ly mod m

arFy mod m

Figure 10.1: The random tree method. Two generators are used to construct a tree of random
numbers. The right generator is applied to elements of the sequence L generated by the left

generator to generate new sequences R, R', R", etc.
PR L 4

L} 1T O

Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint
subsequence of the sequence constructed by the left generator's sequence.

More info in Chapter 10 of

http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Common paradigms

Grid/mesh-based nearest-neighbor simulation

- Often includes math-heavy computations

* Linear algebra and systems of equations
* Dense vs. sparse matrices

— Newer: adaptive mesh and multigrid simulations

Worker pools / task queues

- Newer: adaptive cloud computing

Pipelined task phases

- Newer: MapReduce

Divide-and-conguer tree-based computation

- Often combined with other paradigms (worker pools and pipelines)

I MapReduce

 Parallel/distributed system paradigm for "big data" processing

— Uses a specialized file system
— Originally developed at Google (along with GFS)

— Currently popular: Apache Hadoop and HDFS

* General languages: Java, Python, Ruby, etc.
« Specialized languages: Pig (data flow language) or Hive (SQL-like)
* Growing quickly: Apache Spark (more generic w/ in-memory processing)

 Phases

- Map (process local data)
- Shuffle (distributed sort)

— Reduce (combine results)

s @&

java pgthon

MLlIib GraphX g Packages

DataFrame API
Spark Core
/ / Data Source AY’*I\\
O hErEEm) ll HEBRASE ' @{JSON}MHS& elasticsearch.

€databricks

* Word count example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Apache Hadoop (Java)

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter orter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

I Apache Spark (Python)

WORD COUNT

text_file = sc.textFile("hdfs://docs/input.txt")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://results/counts.txt")

MONTE CARLO PI

def sample(p):
X, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
.map(sample) \
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

