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Parallel Algorithm Development
(Foster's Methodology)

Graphics and content taken from IPP section 2.7 and the following:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf


http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

I Parallel program development

* Writing efficient parallel code is hard

* We've covered two generic paradigms ...
- Shared-memory
— Distributed message-passing
* ... and three specific technologies
- Pthreads
- OpenMP
- MPI

* Given a problem, how do we approach the development of
a parallel program that solves it?



I Method vs. methodology

* Method: a systematic process or way of doing a task

* Methodology: analysis of methods relevant to a discipline
- Literally: "the study of methods"
— Goal: guidelines or best practices for a class of methods
* Parallel algorithms
— There is no single method for creating efficient parallel algorithms

- However, there are some good methodologies that can guide us
- We will study one: Foster's methodology



I Foster's methodology

Task: executable unit along with local memory and 1/O ports

Channel: message queue connecting tasks' input and output ports

Drawn as a graph, tasks are vertices and channels are edges

Steps:

1) Partitioning

2) Communication
3) Agglomeration
4) Mapping
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Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html
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http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Partitioning

* Goal: discover as much parallelism as possible

* Divide computation into as many primitive tasks as
possible

- Avoid redundant computation
- Primitive tasks should be roughly the same size

- Number of tasks should increase as the problem size
Increases

* This helps ensure good scaling behavior



- Break tasks into segments of various granularities by data

 Domain ("data") decomposition




* Functional ("task") decomposition

— Separation by task type

- Domain/data decomposition can often be used inside of
Individual tasks
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I Communication

* Goal: minimize overhead
* |dentify which tasks must communicate and how

- Local (few tasks) vs. global (many tasks)
— Structured (regular) vs. unstructured (irregular)
— Prefer local, structured communication

— Tasks should perform similar amounts of communication
* This helps with load balancing
— Communication should be concurrent wherever possible



* Examples of local communication
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* Examples of global communication:

Processes o

Structured Unstructured



I Agglomeration

* Goal: Reduce messages and simplify programming

 Combine tasks into groups, increasing locality

— Groups should have similar computation and
communication costs

— Task counts should still scale with processor count and /
or problem size

- Minimize software engineering costs
* Agglomeration can prevent code reuse



* Examples:
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Agglomeration of four local tasks Agglomeration of tree-based tasks



I Mapping

Goal: minimize execution time

- Alternately: maximize processor utilization
— On a distributed system: minimize communication

Assign tasks (or task groups) to processors/nodes
- Block vs. cyclic

— Static vs. dynamic
Strategies:
- 1) Place concurrent tasks on different nodes

- 2) Place frequently-communicating tasks on the same node
Problem: these strategies are often in conflict!

— The general problem of optimal mapping is NP-complete
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I Boundary Value Problem

 Problem

— General statement. Determine the temperature changes in a thin
cylinder of uniform material with constant-temperature boundary
caps over a given time period, given the size of the cylinder and its
initial temperature

— General solution: solve partial differential equation(s)
» Often too difficult or expensive to solve analytically

- Approximate solution: finite difference method
* Discretize space (1d grid) and time (ms)

* Goal: Parallelize this solution, using Foster's
methodology as a guide



I Boundary Value Problem

Partitioning:

Make each T(x,t) computation a primitive task.
= 2-dimensional domain decomposition
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I Boundary Value Problem

ommunication:
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I Boundary Value Problem

Agglomeration:
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Agglomeration:
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I Finding a maximum

* Problem: Determine the maximum value among
some large set of given values

— Special case of a reduction

* Goal: Parallelize this solution, using Foster's
methodology as a guide



I Finding a maximum

* Partitioning: each value is a primitive task

- (1d domain decomposition)
— One task (root) will compute final solution

 Communication: divide-and-conquer

- Root task needs to compute max after n-1 tasks
- Keep splitting the input space in half




* Binomial tree with n = 2k nodes
- (remember merge sort in P27?)

Recursive
definition: O
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I Finding a maximum

Agglomeration:

Group n leafs of the tree:
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The same (actually, in the agglomeration phase, use n such that you end
up with p tasks).

Mapping:



I Random number generation

* Goal: Generate psuedo-random numbers in a distributed way

* Problem: We wish to retain some notion of reproducibility

- In other words: results should be deterministic, given the RNG seed

- This means we can't depend on the ordering of distributed
communications

* Problem: We wish to avoid duplicated series of generated
numbers

— This means we can't just use the same generator in all processes



I Random number generation

 Nalve solution:

— Generate all numbers on one node and scatter them (a la P2)
- Too slow!

e Can we do better? (Foster's)

— Generating each random number is a task

- Channels between subsequent numbers from the same seed
- Tweak communication & agglomeration

- Minimize dependencies
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Figure 10.1: The random tree method. Two generators are used to construct a tree of random
numbers. The right generator is applied to elements of the sequence L generated by the left

generator to generate new sequences R, R', R", etc.
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Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint
subsequence of the sequence constructed by the left generator's sequence.

More info in Chapter 10 of

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Common paradigms

Grid/mesh-based nearest-neighbor simulation

- Often includes math-heavy computations

* Linear algebra and systems of equations
* Dense vs. sparse matrices

— Newer: adaptive mesh and multigrid simulations

Worker pools / task queues

- Newer: adaptive cloud computing

Pipelined task phases

- Newer: MapReduce

Divide-and-conguer tree-based computation

- Often combined with other paradigms (worker pools and pipelines)



I MapReduce

 Parallel/distributed system paradigm for "big data" processing

— Uses a specialized file system
— Originally developed at Google (along with GFS)

— Currently popular: Apache Hadoop and HDFS

* General languages: Java, Python, Ruby, etc.
« Specialized languages: Pig (data flow language) or Hive (SQL-like)
* Growing quickly: Apache Spark (more generic w/ in-memory processing)

 Phases

- Map (process local data)
- Shuffle (distributed sort)

— Reduce (combine results)
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* Word count example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result




Apache Hadoop (Java)

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter orter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));



I Apache Spark (Python)

WORD COUNT

text_file = sc.textFile("hdfs://docs/input.txt")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://results/counts.txt")

MONTE CARLO PI

def sample(p):
X, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
.map(sample) \
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)
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