

CS 470
Spring 2018

Mike Lam, Professor

Other Architectures
(with an aside on linear algebra)

Aside (P3 related): linear algebra

● Many scientific phenomena can be modeled as matrix operations
– Differential equations, mesh simulations, view transforms, etc.
– Very efficient on vector processors (including GPUs)
– Data decomposition and SIMD parallelism
– Dense matrices vs. sparse matrices
– Popular packages: BLAS, LINPACK, LAPACK

Dense vs. sparse matrices

● A sparse matrix is one in which most elements are zero
– Could lead to more load imbalances
– Can be stored more efficiently, allowing for larger matrices
– Dense matrix operations no longer work
– It is a challenge to make sparse operations as efficient as

dense operations

HPL benchmark

● HPL: LINPACK-based dense linear algebra benchmark
– Generates a linear system of equations “Ax = b”

● Chooses b such that x (answer vector) values are known

– Distributes dense matrix A in block-cyclic pattern
– LU factorization (similar to Gaussian elimination)
– Backward substitution to solve system
– Error calculation to verify correctness
– Compare max sustained FLOPS (floating-point operations per section)

● Usually significantly less than theoretical machine peak (Rmax vs Rpeak)

– Serves as proxy app for target workloads (similar characteristics)
– Compiled on cluster

● Located in /shared/apps/hpl-2.1/bin/Linux_PII_CBLAS

P3 (OpenMP)

● Similar to HPL benchmark

1) Random generation of linear system (x should be all 1’s)

2) Gaussian elimination

3) Backwards substitution (row- or column-oriented)

 3.0 2.0 -1.0 1.0
 0.0 -3.3 4.7 -2.7
 0.0 0.0 0.3 -0.6

 3.0 2.0 -1.0 1.0
 2.0 -2.0 4.0 -2.0
-1.0 0.5 -1.0 0.0

 1.0 0.0 0.0 1.0
 0.0 1.0 0.0 -2.0
 0.0 0.0 1.0 -2.0

Original system (Ax = b) Augmented matrix [A | b]

Upper triangular system Solved system

Gaussian
elimination

Backward
substitution

Non-random example

P3 notes

● 2D dense matrices in C
– Often stored in 1D arrays w/ access via array index arithmetic
– Trace data access patterns to determine dependencies
– Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
– Example (matrix multiplication):

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

P3 notes

● 2D dense matrices in C
– Often stored in 1D arrays w/ access via array index arithmetic
– Trace data access patterns to determine dependencies
– Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
– Example (matrix multiplication):

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

P3 notes

● 2D dense matrices in C
– Often stored in 1D arrays w/ access via array index arithmetic
– Trace data access patterns to determine dependencies
– Your goals: 1) analyze, 2) parallelize (w/ OpenMP), and 3) evaluate
– Example (matrix multiplication):

void multiply_matrices(int *A, int *B, int *R, int n)
{
 int i, j, k;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 R[i*n+j] = 0;
 for (k = 0; k < n; k++) {
 R[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
} read as R[i,j]

More OpenMP examples

● Posted in /shared/cs470
– For-loop scheduling (omp-sched)

– Critical sections and deadlock (omp-deadlock)

– The ‘atomic’ directive (omp-atomic)

– Tasks (omp-qsort)

– Matrix multiplication (omp-matmult)

Parallel Systems

● Shared memory (uniform global address space)
– Primary story: make faster computers
– Programming paradigm: threads
– Technologies: Pthreads, OpenMP

● Distributed (Non-Uniform Memory Access – NUMA)
– Primary story: add more computers
– Programming paradigm: message passing
– Technologies: MPI (OpenMPI/MPICH), SLURM

Where do we go from here?

A brief digression into gaming

● 1970s: arcades began using specialized graphics chips
● 1980s: increasingly sophisticated capabilities (e.g., sprites, blitters, scrolling)
● Early-mid 1990s: first 3D consoles (e.g., N64) and 3D accelerator cards for PCs
● Late 1990s: classic wars begin: Nvidia vs. ATI and DirectX vs. OpenGL
● Early 2000s: new "shaders" enable easier non-graphical use of accelerators
● Late 2000s: rise of General-Purpose GPU (GPGPU) frameworks

– 2007: Compute Unified Device Architecture (CUDA) released (newer library: Thrust)
– 2009: OpenCL standard released
– 2011: OpenACC standard released

● 2010s: computation-focused manycore CPUs like Intel Phi (up to 64 cores)

GPU Programming

● "Kernels" run on a batch of threads
– Distributed onto many low-powered GPU cores
– Grouped into blocks of cores and grids of blocks
– Limited instruction set that operates on vector data
– Must copy data to/from main memory

GPU Programming (CUDA)

void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Low-level control of
parallelism on GPU

GPU Programming (CUDA)

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}

// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device

 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);

 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 // Print results and cleanup
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 free(a_h); cudaFree(a_d);
}

Must micromanage
memory usage and
data movement

GPU Programming (OpenACC)

#pragma acc data copy(A) create(Anew)
while (error > tol && iter < iter_max) {
 error = 0.0;

 #pragma acc kernels
 {
 #pragma acc loop
 for (int j = 1; j < n-1; j++) {
 for (int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i];
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }

 #pragma acc loop
 for (int j = 1; j < n-1; j++) {
 for (int = i; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 }

 if (iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
 iter++;
}

Fewer modifications
required; may not
parallelize effectively

Hybrid HPC architectures

● Highly parallel on the node
– Hardware: CPU w/ accelerators

● GPUs or manycore processors (e.g., Intel Phi and SunWay)

– Technologies: OpenMP, CUDA, OpenACC, OpenCL
● Distributed between nodes

– Hardware: interconnect and distributed FS
– Technologies: MPI, Infiniband, Lustre, HDFS

Top10 systems (Spring 2016)

Top10 systems (Spring 2017)

Top10 systems (Spring 2018)

Cloud Computing

● Homogenous centralized nodes
– Infrastructure as a Service (IaaS) and Software as as Service (SaaS)
– Hardware: large datacenters with thousands of servers and a high-

speed internet connection
– Software: virtualized OS and custom software (Docker, etc.)

Grid Computing

● Heterogenous nodes in disparate physical locations
– Solving problems or performing tasks of interest to a large

number of diverse groups
– Hardware: different CPUs, GPUs, memory layouts, etc.
– Software: different OSes, Folding@Home, Condor, GIMPs, etc.

Novel architectures

● Memory-centric
– Fast memory fabrics w/ in-chip processing
– Example: HPE The Machine

● Neuromorphic
– Specialized, low-power hardware that emulates neural networks
– Example: IBM TrueNorth

● Quantum
– Leverage quantum superposition and entanglement
– Example: D-Wave Two and IBM QX

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

