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OpenMP

● Programming language extension
– Compiler support required
– "Open Multi-Processing" (open standard; latest version is 4.5)

● “Automatic” thread-level parallelism
– Guided by programmer-supplied directives
– Does NOT verify correctness of parallel transformations
– Targets shared-memory systems
– Used in distributed systems for on-node parallelism

● Other similar techs: Cilk, OpenACC
– OpenMP is currently the most popular CPU-based technology



  

Fork-join threading

● OpenMP provides directives to control threading
– General fork-join threading model w/ teams of threads
– One master thread and multiple worker threads

Source: https://en.wikipedia.org/wiki/Fork–join_model



  

C preprocessor

● Text-based processing phase of compilation
– Can be run individually with “cpp”

● Controlled by directives on lines beginning with “#”
– Must be the first non-whitespace character
– Alignment is a matter of personal style

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
#   ifdef FOO
    printf("Hello!\n");
#   else
    printf("Goodbye!\n");
#   endif
    printf("%d\n", BAR);
    return 0;
}

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
    #ifdef FOO
    printf("Hello!\n");
    #else
    printf("Goodbye!\n");
    #endif
    printf("%d\n", BAR);
    return 0;
}

my preference



  

Pragmas

● #pragma - generic preprocessor directive
– Provides direction or info to later compiler phases
– Ignored by compilers that don't support it
– All OpenMP pragma directives begin with "omp"

– Basic threading directive: "parallel"
● Runs the following code construct in fork/join parallel threads
● Implicit barrier at end of construct

#pragma play(global_thermonuclear_war)
do_something();

#pragma omp parallel
do_something_else();



  

Compiling and running w/ OpenMP

● Must  #include <omp.h>
● Must compile with "-fopenmp" flag

gcc -g -std=c99 -Wall -fopenmp -o omp omp.c

./omp

● Use OMP_NUM_THREADS environment variable to set thread count
– Default value is core count (w/ hyper-threads)

OMP_NUM_THREADS=4 ./omp



  

"Hello World" example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char *argv[])
{

#   pragma omp parallel
    printf("Hello!\n");

    printf("Goodbye!\n");

    return EXIT_SUCCESS;
}



Pragma scope

● Most OpenMP pragmas apply to the immediately-
following statement or block
– Not necessarily just the next line!

#   pragma omp parallel

    printf("hello!\n");

#   pragma omp parallel

    {

        int a = 0;

        ...

        global_var += a;

    }

#   pragma omp parallel

    total += a * b + c;

#   pragma omp parallel

    for (i = 0; i < n; i++) {

        sum += i;

    }



  

Clauses

● Directives can be modified by clauses
– Text that follows the directive
– Some clauses take parameters
– E.g., "num_threads"

# pragma omp parallel num_threads(thread_count)



  

Functions

● Built-in functions:
– omp_get_num_threads()

● Returns the number of threads in the current team
● Similar to MPI_Comm_size

– omp_get_max_threads()
● Returns the maximum number of threads in a team
● Can be used outside a parallel region

– omp_get_thread_num()
● Returns the caller's thread ID within the current team
● Similar to MPI_Comm_rank

– omp_get_wtime()
● Returns the elapsed wall time in seconds
● Similar to MPI_Wtime



  

Incremental parallelization

● Pragmas allow incremental parallelization
– Gradually add parallel constructs
– OpenMP programs should be correct serial programs when 

compiled without "-fopenmp"
● Pragma directives are ignored

– Use "_OPENMP" preprocessor variable to test
● If defined, it is safe to call OpenMP functions

#ifdef _OPENMP

#include <omp.h>

#endif

#   ifdef _OPENMP

    int my_rank = omp_get_thread_num();

    int thread_count = omp_get_num_threads();

#   else

    int my_rank = 0;

    int thread_count = 1;

#   endif



  

Trapezoid example (from textbook)



  

Trapezoid example (from textbook)

Is this task or data

parallelism?

What problem(s)

might we run into?



  

Mutual exclusion

● Use "critical" directive to enforce mutual exclusion
– Only one thread at a time can execute the following construct
– A critical section can optionally be named

● Sections that share a name share exclusivity
● CAUTION: all unnamed sections “share” a name!

#   pragma omp critical(gres)

    global_result += my_result ;



  

Barriers

● Explicit barrier: "barrier" directive
– All threads must sync

#   pragma omp barrier



  

Single-thread regions

● Implicit barrier: "single" directive
– Only one thread executes the following construct

● Could be any thread; don’t assume it’s the master
● For master-thread-only, use “master” directive

– All threads must sync at end of directive
● Use “nowait” clause to prevent this implicit barrier

#   pragma omp single

    global_result /= 2;

#   pragma omp single nowait

    global_iter_count++;



  

Scope of variables

● In OpenMP, each variable has a thread "scope"
– Shared scope: accessible by all threads in team

● Default for variables declared before a parallel block

– Private scope: accessible by only a single thread
● Default for variables declared inside a parallel block

    double foo = 0.0;

#   pragma omp parallel

    {

        double bar = do_calc() * PI;

#       pragma omp critical

        foo = foo + bar/2.0;

    }



  

Default scoping

● The "default" clause changes the default scope for 
variables declared outside the parallel block
– default(none) mandates explicit scope declaration

● Use "shared" and "private" clauses
● Compiler will check that you declared all variables
● This is good programming practice!



  

Reductions

● The reduction(op:var) clause applies an operator to a 
sequence of operands to get a single result
– Similar to MPI_Reduce, but not distributed

– In OpenMP, uses a shared-memory reduction variable (var)

– All intermediate/final values are stored in the reduction variable
– OpenMP handles synchronization (implicit mutex)

– Supported operations (op): +, -, *, &, |, ^, &&, ||, min, max

    double foo = 0.0;

#   pragma omp parallel reduction(+:foo)

    foo += (do_calc() * PI)/2.0;



  

Parallel for loops

● The "parallel for" directive parallelizes a loop
– Probably the most powerful and most-used directive
– Divides loop iterations among a team of threads
– CAVEAT: the for-loop must have a very particular form



  

Parallel for loops

● The compiler must be able to determine the number of 
iterations prior to the execution of the loop

● Implications/restrictions:
– The number of iterations must be finite (no "for (;;)")

– The break statement cannot be used (although exit() is ok)

– The index variable must have an integer or pointer type

– The index variable must only be modified by the "increment" part 
of the loop declaration

– The index, start, end, and incr expressions/variables must all 
have compatible types

– The start, end, and incr expressions must not change during 
execution of the loop



  

Issue: correctness

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes
we get this

fib[0] = fib[1] = 1;

for (i = 2; i < n; i++)

     fib[i] = fib[i-1] + fib[i-2]; 

    fib[0] = fib[1] = 1;

#   pragma omp parallel for num_threads(2)

    for (i = 2; i < n; i++)

          fib[i] = fib[i-1] + fib[i-2]; 

2 threads



  

Loop dependencies

● A loop has a data dependence if one iteration 
depends on another iteration
– Explicitly (as in Fibonacci example) or implicitly
– Includes side effects!
– Sometimes called loop-carried dependence

● A loop with dependencies cannot (usually) be 
parallelized correctly by OpenMP
– Identifying dependencies is very important!
– OpenMP does not check for them



  

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
    a[i] = b[i] * c[i];
}

for (i = 0; i < n; i++) {
    a[i] += b[i]
}

for (i = 0; i < n; i++) {
    a[i] += a[i]
}

for (i = 1; i < n; i++) {
    a[i] += a[i-1]
}

for (i = 1; i < n; i += 2) {
    a[i] += a[i-1]
}

for (i = 1; i < n; i++) {
    a[i] += b[i-1]
}



  

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
    a[i] = b[i] * c[i];
}
   OK!

for (i = 0; i < n; i++) {
    a[i] += b[i]
}
   OK!

for (i = 0; i < n; i++) {
    a[i] += a[i]
}
   OK!

for (i = 1; i < n; i++) {
    a[i] += a[i-1]
}
   BAD!   (iteration i depends on i-1)

for (i = 1; i < n; i += 2) {
    a[i] += a[i-1]
}
   OK!

for (i = 1; i < n; i++) {
    a[i] += b[i-1]
}
   OK!
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