

CS 470
Spring 2018

Mike Lam, Professor

OpenMP

OpenMP

● Programming language extension
– Compiler support required
– "Open Multi-Processing" (open standard; latest version is 4.5)

● “Automatic” thread-level parallelism
– Guided by programmer-supplied directives
– Does NOT verify correctness of parallel transformations
– Targets shared-memory systems
– Used in distributed systems for on-node parallelism

● Other similar techs: Cilk, OpenACC
– OpenMP is currently the most popular CPU-based technology

Fork-join threading

● OpenMP provides directives to control threading
– General fork-join threading model w/ teams of threads
– One master thread and multiple worker threads

Source: https://en.wikipedia.org/wiki/Fork–join_model

C preprocessor

● Text-based processing phase of compilation
– Can be run individually with “cpp”

● Controlled by directives on lines beginning with “#”
– Must be the first non-whitespace character
– Alignment is a matter of personal style

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
ifdef FOO
 printf("Hello!\n");
else
 printf("Goodbye!\n");
endif
 printf("%d\n", BAR);
 return 0;
}

#include <stdio.h>
#define FOO
#define BAR 5

int main() {
 #ifdef FOO
 printf("Hello!\n");
 #else
 printf("Goodbye!\n");
 #endif
 printf("%d\n", BAR);
 return 0;
}

my preference

Pragmas

● #pragma - generic preprocessor directive
– Provides direction or info to later compiler phases
– Ignored by compilers that don't support it
– All OpenMP pragma directives begin with "omp"

– Basic threading directive: "parallel"
● Runs the following code construct in fork/join parallel threads
● Implicit barrier at end of construct

#pragma play(global_thermonuclear_war)
do_something();

#pragma omp parallel
do_something_else();

Compiling and running w/ OpenMP

● Must #include <omp.h>
● Must compile with "-fopenmp" flag

gcc -g -std=c99 -Wall -fopenmp -o omp omp.c

./omp

● Use OMP_NUM_THREADS environment variable to set thread count
– Default value is core count (w/ hyper-threads)

OMP_NUM_THREADS=4 ./omp

"Hello World" example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char *argv[])
{

pragma omp parallel
 printf("Hello!\n");

 printf("Goodbye!\n");

 return EXIT_SUCCESS;
}

Pragma scope

● Most OpenMP pragmas apply to the immediately-
following statement or block
– Not necessarily just the next line!

pragma omp parallel

 printf("hello!\n");

pragma omp parallel

 {

 int a = 0;

 ...

 global_var += a;

 }

pragma omp parallel

 total += a * b + c;

pragma omp parallel

 for (i = 0; i < n; i++) {

 sum += i;

 }

Clauses

● Directives can be modified by clauses
– Text that follows the directive
– Some clauses take parameters
– E.g., "num_threads"

pragma omp parallel num_threads(thread_count)

Functions

● Built-in functions:
– omp_get_num_threads()

● Returns the number of threads in the current team
● Similar to MPI_Comm_size

– omp_get_max_threads()
● Returns the maximum number of threads in a team
● Can be used outside a parallel region

– omp_get_thread_num()
● Returns the caller's thread ID within the current team
● Similar to MPI_Comm_rank

– omp_get_wtime()
● Returns the elapsed wall time in seconds
● Similar to MPI_Wtime

Incremental parallelization

● Pragmas allow incremental parallelization
– Gradually add parallel constructs
– OpenMP programs should be correct serial programs when

compiled without "-fopenmp"
● Pragma directives are ignored

– Use "_OPENMP" preprocessor variable to test
● If defined, it is safe to call OpenMP functions

#ifdef _OPENMP

#include <omp.h>

#endif

ifdef _OPENMP

 int my_rank = omp_get_thread_num();

 int thread_count = omp_get_num_threads();

else

 int my_rank = 0;

 int thread_count = 1;

endif

Trapezoid example (from textbook)

Trapezoid example (from textbook)

Is this task or data

parallelism?

What problem(s)

might we run into?

Mutual exclusion

● Use "critical" directive to enforce mutual exclusion
– Only one thread at a time can execute the following construct
– A critical section can optionally be named

● Sections that share a name share exclusivity
● CAUTION: all unnamed sections “share” a name!

pragma omp critical(gres)

 global_result += my_result ;

Barriers

● Explicit barrier: "barrier" directive
– All threads must sync

pragma omp barrier

Single-thread regions

● Implicit barrier: "single" directive
– Only one thread executes the following construct

● Could be any thread; don’t assume it’s the master
● For master-thread-only, use “master” directive

– All threads must sync at end of directive
● Use “nowait” clause to prevent this implicit barrier

pragma omp single

 global_result /= 2;

pragma omp single nowait

 global_iter_count++;

Scope of variables

● In OpenMP, each variable has a thread "scope"
– Shared scope: accessible by all threads in team

● Default for variables declared before a parallel block

– Private scope: accessible by only a single thread
● Default for variables declared inside a parallel block

 double foo = 0.0;

pragma omp parallel

 {

 double bar = do_calc() * PI;

pragma omp critical

 foo = foo + bar/2.0;

 }

Default scoping

● The "default" clause changes the default scope for
variables declared outside the parallel block
– default(none) mandates explicit scope declaration

● Use "shared" and "private" clauses
● Compiler will check that you declared all variables
● This is good programming practice!

Reductions

● The reduction(op:var) clause applies an operator to a
sequence of operands to get a single result
– Similar to MPI_Reduce, but not distributed

– In OpenMP, uses a shared-memory reduction variable (var)

– All intermediate/final values are stored in the reduction variable
– OpenMP handles synchronization (implicit mutex)

– Supported operations (op): +, -, *, &, |, ^, &&, ||, min, max

 double foo = 0.0;

pragma omp parallel reduction(+:foo)

 foo += (do_calc() * PI)/2.0;

Parallel for loops

● The "parallel for" directive parallelizes a loop
– Probably the most powerful and most-used directive
– Divides loop iterations among a team of threads
– CAVEAT: the for-loop must have a very particular form

Parallel for loops

● The compiler must be able to determine the number of
iterations prior to the execution of the loop

● Implications/restrictions:
– The number of iterations must be finite (no "for (;;)")

– The break statement cannot be used (although exit() is ok)

– The index variable must have an integer or pointer type

– The index variable must only be modified by the "increment" part
of the loop declaration

– The index, start, end, and incr expressions/variables must all
have compatible types

– The start, end, and incr expressions must not change during
execution of the loop

Issue: correctness

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes
we get this

fib[0] = fib[1] = 1;

for (i = 2; i < n; i++)

 fib[i] = fib[i-1] + fib[i-2];

 fib[0] = fib[1] = 1;

pragma omp parallel for num_threads(2)

 for (i = 2; i < n; i++)

 fib[i] = fib[i-1] + fib[i-2];

2 threads

Loop dependencies

● A loop has a data dependence if one iteration
depends on another iteration
– Explicitly (as in Fibonacci example) or implicitly
– Includes side effects!
– Sometimes called loop-carried dependence

● A loop with dependencies cannot (usually) be
parallelized correctly by OpenMP
– Identifying dependencies is very important!
– OpenMP does not check for them

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
 a[i] = b[i] * c[i];
}

for (i = 0; i < n; i++) {
 a[i] += b[i]
}

for (i = 0; i < n; i++) {
 a[i] += a[i]
}

for (i = 1; i < n; i++) {
 a[i] += a[i-1]
}

for (i = 1; i < n; i += 2) {
 a[i] += a[i-1]
}

for (i = 1; i < n; i++) {
 a[i] += b[i-1]
}

Loop dependencies

● Examples:

for (i = 0; i < n; i++) {
 a[i] = b[i] * c[i];
}
 OK!

for (i = 0; i < n; i++) {
 a[i] += b[i]
}
 OK!

for (i = 0; i < n; i++) {
 a[i] += a[i]
}
 OK!

for (i = 1; i < n; i++) {
 a[i] += a[i-1]
}
 BAD! (iteration i depends on i-1)

for (i = 1; i < n; i += 2) {
 a[i] += a[i-1]
}
 OK!

for (i = 1; i < n; i++) {
 a[i] += b[i-1]
}
 OK!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

