

Warm-up question (CS 261 review)

● What is the primary difference between processes and
threads from a developer’s perspective?

CS 470
Spring 2018

Mike Lam, Professor

Multithreading & Pthreads

POSIX

MIMD system architectures

● Shared memory

● Distributed memory

Multithreading

● A process is an instance of a running program

– Private address space, shared files/sockets

● A thread is a single unit of execution

– Private stack/registers, shared address space

● Multithreading libraries provide thread management

– Spawn/kill capabilities

– Synchronization mechanisms

– POSIX threads: Pthreads

POSIX threads

● Pthreads – POSIX standard interface for threads in C

– pthread_create: spawn a new thread
● pthread_t struct for storing thread info
● attributes (or NULL)
● thread work routine (function pointer)
● thread routine parameter (void*)

– pthread_self: get current thread ID

– pthread_exit: terminate current thread
● can also terminate implicitly by returning from the thread routine

– pthread_join: wait for another thread to terminate

Thread creation example

#include <stdio.h>
#include <pthread.h>

void* work (void* arg)
{
 printf("Hello from new thread!\n");
 return NULL;
}

int main ()
{
 printf("Spawning new thread ...\n");

 pthread_t peer;
 pthread_create(&peer, NULL, work, NULL);
 pthread_join(peer, NULL);

 printf("Done!\n");

 return 0;
}

main

create()

join()

peer

work()

main()

Shared memory

● Some data is shared in threaded programs

– Global variables (shared, single static copy)

– Local variables (multiple copies, one on each stack)
● Technically still shared if in memory, but harder to access
● Not shared if cached in register
● Safer to assume they're private

– Local static variables (shared, single static copy)

Issues with shared memory

● Nondeterminism

● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

thread1 thread2

foo()

Issues with shared memory

● Nondeterminism

● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

This interleaving is ok.

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

● Nondeterminism

● Data races and deadlock

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

PROBLEM!

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

● Nondeterminism

– Incorrect code can produce “correct” results

– Test suites cannot guarantee correctness!

● Data races

● Deadlock

● Starvation

Synchronization mechanisms

● Busy-waiting (wasteful!)

● Atomic instructions (e.g., LOCK prefix in x86)

● Pthreads

– Mutex: simple mutual exclusion (“lock”)

– Condition variable: lock + wait set (wait/signal/broadcast)

– Semaphore: access to limited resources
● Not technically part of Pthreads library (just the POSIX standard)

– Barrier: ensure all threads are at the same point
● Not present in all implementations (requires --std=gnu99 on cluster)

● Java threads

– Synchronized keyword: implicit mutex

– Monitor: lock on object (wait/notify/notifyAll)

Common synchronization patterns

● Naturally (“embarrassingly”) parallel

– No synchronization!

● Mutual exclusion

– Use a lock

● Producer/consumer

– Protect common buffer w/ lock

● Readers/writers

– Multiple lock types

● Dining philosophers

– Atomic acquisition of multiple locks

Synchronization granularity

● Granularity: level at which a structure is locked

– Whole structure vs. individual pieces

– If individual pieces, which pieces?

– Simple locks vs. read/write locks

– Tradeoff: coarse (lower granularity) vs. fine-grained (higher
granularity) locks

Caching effects

● Caching

– Keep frequently-used stuff in faster memory

● Cache line

– Single unit of cached data

● Cache hits/misses

– Was data in cache? (if so, hit; if not, miss)

● Cache invalidation

– Writes to one cache can render another cache out-of-date

● False sharing

– Unnecessary cache invalidation

Multithreading summary

● Shared memory parallelism has a lot of benefits

– Low overhead for thread creation/switching

– Uniform memory access times (symmetric multiprocessing)

● It also has significant issues

– Limited scaling (# of cores)

– Requires explicit thread management

– Requires explicit synchronization (HARD!)

– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity

– Higher granularity: simpler but slower

– Lower granularity: more complex but faster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

