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Performance analysis

● Why do we parallelize our programs?



  

Performance analysis

● Why do we parallelize our programs?

– So that they run faster!



  

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?



  

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?

– Asymptotic analysis (i.e., distributed sum)

– Empirical analysis



  

Empirical analysis issues

● How do you measure time-to-solution accurately?

– CPU cycles, OS clock "ticks", wall time, etc.

● How do you compare across systems?

– Differing CPUs, memories, OSes, etc.

● How do you compare against the original?

– 1-core parallel version will likely be slower

● How do you assess scalability?

– Does performance improve as you add cores?

– How do you quantify the improvement?

– Is there a limit to how far we can improve performance?



  

Experimental methods

● Measure wall time for specific code regions of interest

– Ignore startup and I/O time if not relevant

– Make sure you have a high-resolution timer!
● /usr/bin/time -v for whole programs
● gettimeofday() from sys/time.h for Pthreads
● omp_get_wtime() for OpenMP
● MPI_Wtime() for MPI

– Use barriers if necessary to make sure all
threads/processes have finished before you stop a timer



  

Experimental methods

● Control for variance

– Do all experiments on the same machine or cluster

– Maximum of one thread per core and one job per node
● Our cluster can support 8 threads per node (or 16 if hyper-

threading, but this is not recommended)

– Run multiple trials and use minimum time
● Avoid OS interference or noise

– Track variance to measure system noise
● If your variance is low or if your slowest and fastest time are

relatively close, it's probably noise!



  

Empirical analysis
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Amdahl's Law

r = serial % of program
S = speedup =

T S

(1−r )T S

p
+ r T S

Amdahl's Law:

S ≤       as p increases1
r

p = # of processors

r = 10% → speedup limited to 10x

r = 5%   → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely
proportionally by serial %



  

Scaling

● Generally, we don't care about any particular TP

– Or with how it compares to TS (except as a sanity check)

● More important: how TP , S, and E change as p increases

– And/or as the problem size increases

– Similar to asymptotic analysis in CS 240

– In general, a program is scalable if E remains fixed as p and the
problem size increase at fixed rates

– Most common: graph TP on y-axis vs. p on logarithmic x-axis
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Scaling

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change (2x procs → half time)

– Sublinear (most common) / superlinear (exceedingly rare) speedup

● Weak scaling: as p increases AND the problem size increases
proportionally, TP stays roughly the same
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Scaling

● Alternatively:

– Strong scaling means we can keep the efficiency fixed
without increasing the problem size

– Weak scaling means we can keep the efficiency fixed by
increasing the problem size at the same rate as the
process/thread count
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Cluster access

● Detailed instructions online:  
w3.cs.jmu.edu/lam2mo/cs470/cluster.html

● Connect to login node via SSH

– Hostname: login.cluster.cs.jmu.edu

– User/password: (your e-ID and password)

● Recommended conveniences

– Set up public/private key access from stu

– Set up .ssh/config entries

– Install Spack for access to more software

http://w3.cs.jmu.edu/lam2mo/cs470/cluster.html


  

Cluster access

● Things to play with:

– "squeue" or "watch squeue" to see jobs

– "srun <command>" to run an interactive job
● Use “-n <p>” to launch p processes
● Use “-N <n>” to request n nodes (defaults to p/8)
● The given “<command>” will run in every process

– "salloc <command>" to run an interactive MPI job
● Use “-n <p>” to launch p MPI processes 

srun hostname
srun -n 4 hostname
srun -n 16 hostname
srun -N 4 hostname
srun sleep 5
srun -N 2 sleep 5

salloc -n 1 mpirun /shared/mpi-pi/mpipi
salloc -n 2 mpirun /shared/mpi-pi/mpipi
salloc -n 4 mpirun /shared/mpi-pi/mpipi
salloc -n 8 mpirun /shared/mpi-pi/mpipi
salloc -n 16 mpirun /shared/mpi-pi/mpipi
(etc.)

What’s the max n?



  

Job management

● SLURM (Simple Linux Utility for Resource Management) is a
piece of system software outside the OS (a.k.a. middleware)
that handles job submission and scheduling on our cluster

● An interactive job takes control of your terminal

– Run with srun or sbatch

– You may interact with it (provide standard input, etc.)

– You also have to wait for it to finish

– Similar to a foreground shell job

● A batch job runs in the background without interaction

– Create a shell script and run it with sbatch

– Sends output to a file (named “slurm-JOBID.out” by default)

– Use squeue to check to see if it has finished



  

Batch jobs

● To run a batch job on the cluster, create a shell script
and run it with sbatch

● Bash example:

#!/bin/bash
#
#SBATCH --job-name=hostname
#SBATCH --nodes=1
#SBATCH --ntasks=1

<your commands go here>



  

Running experiments

● Common experimentation patterns in Bash:

# run 5 times
for i in $(seq 1 5); do
    <cmd>
done

# run common thread counts
for t in 1 2 4 8 16; do
    OMP_NUM_THREADS=$t <cmd>
done


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

