
CS 470 Spring 2017

Mike Lam, Professor

Security

a.k.a. "Why on earth do Alice and Bob need to talk so much?!?"

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 9) Various online sources

Security Issues

- Confidentiality: data is only disclosed to authorized users
- Integrity: changes can only be made by authorized users
- Security threats
 - Interception
 - Interruption
 - Modification
 - Fabrication

Security Solutions

- Security policy: description of actions allowed in a system
 - E.g., "users in group 'students' may read files located in /shared but cannot write to them"
- Policy enforcement mechanisms
 - Encryption
 - Authentication
 - Authorization
 - Auditing

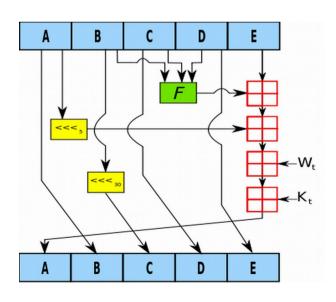
Distributed security

- Encryption: are messages secure against eavesdroppers?
 - Variation on end-to-end principle
- Authentication: are you connecting to the real recipient?
 - Issue of identity verification
- Authorization: do you have permission to perform this action?
 - Intersects with business/policy concerns
- Auditing: has the system been compromised?
 - Often bound by legal requirements

Least privilege

- Principle Of "Least Privilege" (POLP)
 - Every process or user should only be able to access resources or perform actions that are strictly necessary
 - Systems should be designed to minimize privilege

Least privilege


- Principle Of "Least Privilege" (POLP)
 - Every process or user should only be able to access resources or perform actions that are strictly necessary
 - Systems should be designed to minimize privilege
 - Limits vulnerability of the system to compromised components
 - Minimizes the need for full trust in participants
 - Social engineering can compromise even well-meaning participants
 - Tradeoff vs. convenience

Trust

- How much of your computer do you trust?
 - (and what does that even mean?)
- "Reflections on Trusting Trust"
 - A compiler virus that inserts a backdoor into login()
 - It also re-inserts itself to any further compilers
 - Ken Thompson Turing Award lecture (1984)
 https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
- Trusted Computing Base (TCB)
 - Minimal component of a system trusted to enforce security policies
 - Sometimes a physically-separate ROM-based processor
 - Hidden encryption key inaccessible to the rest of the system
 - Trusted Computing Group's Trusted Platform Module (TPM)

Hash functions

- One-way hash functions w/ collision resistance
 - Computationally infeasible to reverse
 - MD5: 128-bit fixed-length message digest
 - SHA-1 / SHA-2 / SHA-256 / SHA-512

One iteration of SHA-1

SHA1("The quick brown fox jumps over the lazy dog") = 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

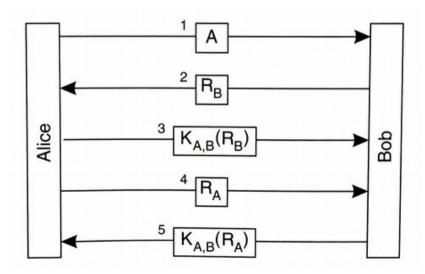
SHA1("The quick brown fox jumps over the lazy cog") = de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3

A, B, C, D and E are 32-bit words of the state; F is a nonlinear function that varies; <<<_n denotes a left bit rotation by n places; n varies for each operation; W_t is the expanded message word of round t; K_t is the round constant of round t; + denotes addition modulo 2³²

Cryptography

- Terminology
 - Plaintext: original message
 - Ciphertext: encrypted plaintext
 - Nonce: random number that is only used once
 - Encrypt: turn plaintext into ciphertext
 - $\bullet \quad C = E_K(P)$
 - Usually based on a one-way hash function
 - Decrypt: turn ciphertext into plaintext
 - $P = D_K(C)$
 - Alternatively: $P = D_K(E_K(P))$
 - Cryptographic system: set of D() and E() functions

Cryptography


- Symmetric ($P = D_K(E_K(P))$) vs. asymmetric ($P = D_{KD}(E_{KE}(P))$)
 - Same key vs. key pair
 - Private key vs. public/private keys
- Symmetric: Data Encryption Standard (DES)
 - XOR-based operations with different 48-bit keys
 - Fast to encrypt/decrypt, relies on robust secret keys
- Asymmetric: Rivest, Shamir, Adleman (RSA)
 - Multiplication and modulus operations with large prime keys
 - Signing (encrypt w/ private) and secure messaging (encrypt w/ public)
 - Slow to encrypt/decrypt, relies on difficulty of prime factorization

Authentication

- A secure channel provides security on an unsecured network
 - Requires some kind of setup first
 - Protects against interception, modification, and fabrication
 - Cannot prevent interruption (recall CAP theorem)
 - Issue: authentication (verifying the identity of the recipient)
 - Issue: establishing shared secrets (after verifying identity)
- Security protocols
 - Shared-key authentication (requires pairwise secrets)
 - Needham-Schroeder authentication (uses central server)
 - Key signing parties (physical exchange of keys)
 - Diffie-Helman key exchange (uses public messaging)

Shared-key authentication

- Basic challenge-response protocol
 - Alice contacts Bob ("A")
 - Bob issues a challenge (" R_B ") and receives a response (R_B encrypted using shared key " $K_{A,B}$ ")
 - Alice also issues a challenge ("R_A") and receives a similar response
 - Issue: requires shared key

- Uses a central Key Distribution Center (KDC)
 - Alice sends a nonce to the KDC to request communication with Bob
 - The nonce prevents a replay attack using an old (compromised) K_{B,KDC}
 - Alice receives a new shared key $(K_{A,B})$ as well as an encrypted copy to send to Bob
 - Bob and Alice then exchange challenges and responses using this shared key

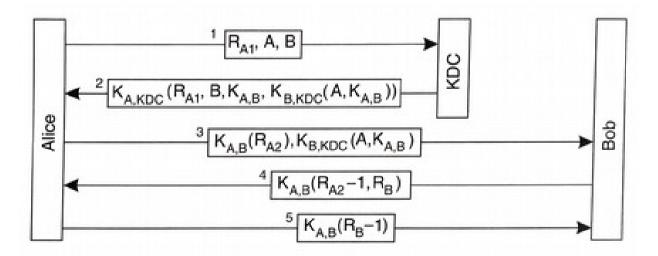


Figure 9-17. The Needham-Schroeder authentication protocol.

- Uses a central Key Distribution Center (KDC)
 - Alice sends a nonce to the KDC to request communication with Bob
 - The nonce prevents a replay attack using an old (compromised) K_{B,KDC}
 - Alice receives a new shared key $(K_{A,B})$ as well as an encrypted copy to send to Bob
 - Bob and Alice then exchange challenges and responses using this shared key

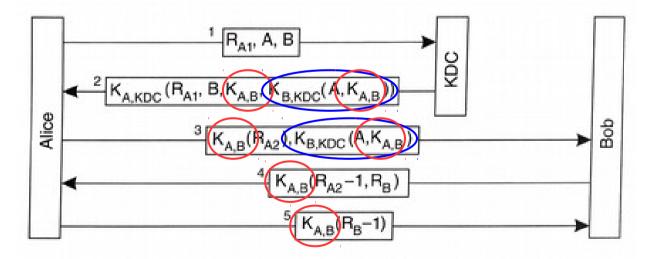


Figure 9-17. The Needham-Schroeder authentication protocol.

- Uses a central Key Distribution Center (KDC)
 - Alice sends a nonce to the KDC to request communication with Bob
 - The nonce prevents a replay attack using an old (compromised) K_{B,KDC}
 - Alice receives a new shared key $(K_{A,B})$ as well as an encrypted copy to send to Bob
 - Bob and Alice then exchange challenges and responses using this shared key
 - Kerberos is similar, but uses an Authentication Server (AS) to establish identity and a Ticket Granting Server (TGS) to set up shared keys

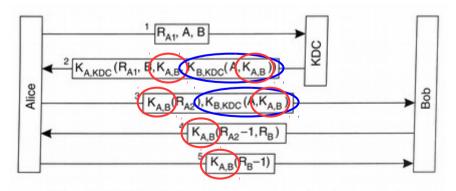


Figure 9-17. The Needham-Schroeder authentication protocol.

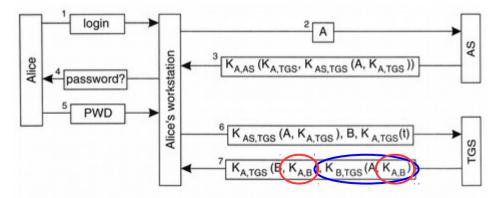
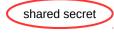



Figure 9-23. Authentication in Kerberos.

- Uses a central Key Distribution Center (KDC)
 - Alice sends a nonce to the KDC to request communication with Bob
 - The nonce prevents a replay attack using an old (compromised) K_{B,KDC}
 - Alice receives a new shared key $(K_{A,B})$ as well as an encrypted copy to send to Bob
 - Bob and Alice then exchange challenges and responses using this shared key
 - Kerberos is similar, but uses an Authentication Server (AS) to establish identity and a Ticket Granting Server (TGS) to set up shared keys

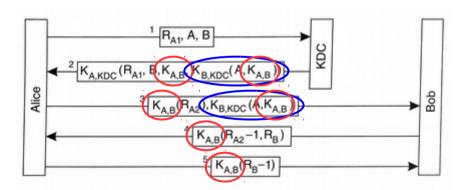


Figure 9-17. The Needham-Schroeder authentication protocol.

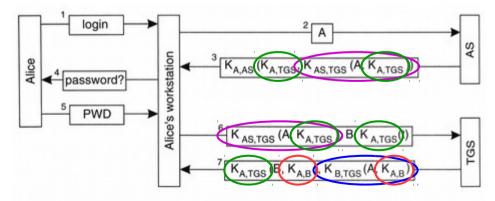
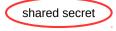
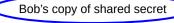




Figure 9-23. Authentication in Kerberos.

Kerberos

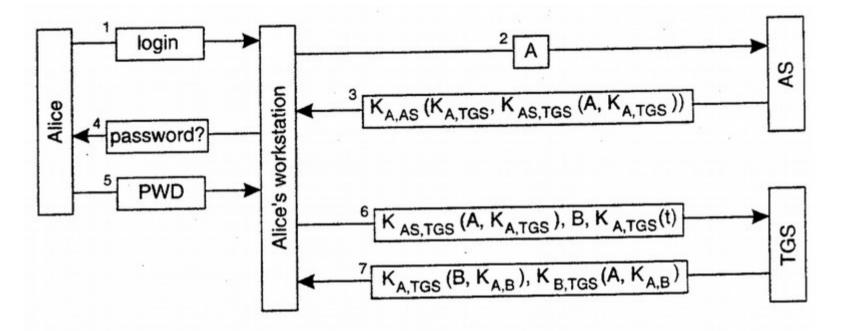


Figure 9-23. Authentication in Kerberos.



Figure 9-24. Setting up a secure channel in Kerberos.

Public keys

- Private keys are used to sign documents by encrypting them
- A certificate is a signed document claiming to own a public key
 - Only the public key can decrypt the document, proving it was encrypted using the corresponding private key
- At a key signing party, participants exchange fingerprint versions of their public keys
 - This allows others to later sign a certificate containing a known public key (thus vouching for its authenticity)
 - Purely peer-to-peer; no central server required
- Issues: scaling and certificate revocation
 - Revocation lists and certificate lifetime limits

Diffie-Helman key exchange

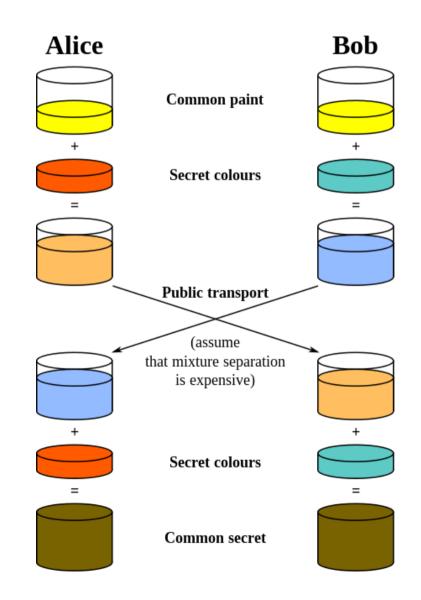
- Allows distributed entities to establish a shared secret via unsecured channels
- Can be extended to more than two entities
- Resists man-in-the-middle attacks
 - Third party pretends to be other conversant

```
    Alice and Bob agree to use a modulus p = 23 and base g = 5
    Alice chooses a secret integer a = 6, then sends Bob A = g<sup>a</sup> mod p

            A = 5<sup>6</sup> mod 23 = 8

    Bob chooses a secret integer b = 15, then sends Alice B = g<sup>b</sup> mod p

            B = 5<sup>15</sup> mod 23 = 19

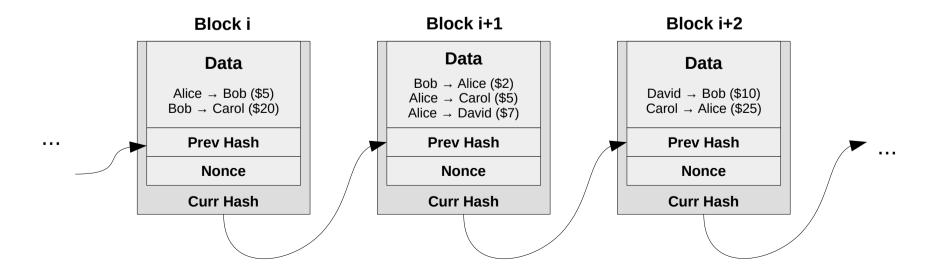

    Alice computes s = B<sup>a</sup> mod p

            s = 19<sup>6</sup> mod 23 = 2

    Bob computes s = A<sup>b</sup> mod p

            s = 8<sup>15</sup> mod 23 = 2

    Alice and Bob now share a secret (the number 2).
    Both Alice and Bob have arrived at the same value s, because, under mod p, A<sup>b</sup> mod p = g<sup>ab</sup> mod p = g<sup>ba</sup> mod p = B<sup>a</sup> mod p<sup>[9]</sup>
    More specifically,
            (g<sup>a</sup> mod p)<sup>b</sup> mod p = (g<sup>b</sup> mod p)<sup>a</sup> mod p
```



Authorization

- Access control mechanisms enforce authorization constraints
 - Internal vs. external access control
 - Firewalls prevent external access to a host or internal network
 - Defends against Denial-of-Service (DoS) or distributed DoS (DDoS) attacks
 - Access control matrices track user permissions
- A directory service provides internal distributed access control
 - Handles user management/permissions and password storage
 - Often distributed and/or replicated among multiple servers
 - Lightweight Directory Access Protocol (LDAP) for communication
 - Authentication provided by protocols like Kerberos
 - Example: Active Directory

Auditing

- Access logs provide an audit trail for a system
 - Who can access the logs? Who can modify them?
 - Append-only logs provide guarantees against tampering using checksums and/or cryptographic signing
 - Bitcoin (and other cryptocurrencies) uses an append-only blockchain of cryptographically-signed transactions to preserve financial integrity
 - Demo: ☐tps://anders.com/blockchain/blockchain.html

