50fb6be35f4c3105
9d4ed08fhb86d8887
b746c452a9c9443b
15b22f450c76218e

9df7031cdbff9od10
b700a92855116328
5b757e66d2131841
62fedd7d9131e42e

CS 470 =
Spring 2017

Mike Lam, Professor

Security

a.k.a. “Why on earth do Alice and Bob need to talk so much?!?”

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 9)
Various online sources

I Security Issues

e Confidentiality: data is only disclosed to authorized users
e Integrity: changes can only be made by authorized users
e Security threats

— Interception
— Interruption
— Modification
— Fabrication

I Security Solutions

e Security policy: description of actions allowed in a system

- E.g., "users in group 'students’ may read files located in /shared
but cannot write to them"

* Policy enforcement mechanisms

— Encryption

— Authentication
— Authorization
— Auditing

I Distributed security

Encryption: are messages secure against eavesdroppers?

— Variation on end-to-end principle

Authentication: are you connecting to the real recipient?

— Issue of identity verification

Authorization: do you have permission to perform this action?

— Intersects with business/policy concerns

Auditing: has the system been compromised?

— Often bound by legal requirements

I Least privilege

* Principle Of “Least Privilege” (POLP)

— Every process or user should only be able to access
resources or perform actions that are strictly necessary

— Systems should be designed to minimize privilege

I Least privilege

* Principle Of “Least Privilege” (POLP)

— Every process or user should only be able to access
resources or perform actions that are strictly nhecessary

— Systems should be designed to minimize privilege
— Limits vulnerability of the system to compromised components
— Minimizes the need for full trust in participants

e Social engineering can compromise even well-meaning participants
— Tradeoff vs. convenience

I Trust

e How much of your computer do you trust?
— (and what does that even mean?)
e "Reflections on Trusting Trust"

— A compiler virus that inserts a backdoor into 1login()
— It also re-inserts itself to any further compilers
— Ken Thompson Turing Award lecture (1984)

https://www.ece.cmu.edu/~ganger/712.fall@2/papers/p761-thompson.pdf

 Trusted Computing Base (TCB)

compile(s)
char »s;
|
ifimatchys, “pattem1°)) {
compile ("dug1)
retum;
]
if(match(s, “pattem 27)) |
compile ("bug 2%
retum,
]

— Minimal component of a system trusted to enforce security policies

— Sometimes a physically-separate ROM-based processor
— Hidden encryption key inaccessible to the rest of the system
— Trusted Computing Group's Trusted Platform Module (TPM)

I Hash functions

* One-way hash functions w/ collision resistance

Computationally infeasible to reverse

MD5: 128-bit fixed-length message digest
SHA-1/ SHA-2 /| SHA-256 / SHA-512

C D
|
i
N

A

B C D

One iteration of SHA-1

SHAL("The quick brown fox jumps over the lazy dog")
=2fd4elc67a2d28fced849eelbb76e7391b93eb12

SHAL1("The quick brown fox jumps over the lazy cog")
= de9f2c7fd25el1b3afad3e85a0bd17d9b100db4b3

A, B, C, D and E are 32-bit words of the state;
F is a nonlinear function that varies;
<<<_denotes a left bit rotation by n places;

n varies for each operation;
W, is the expanded message word of round t;

K. is the round constant of round t;
+ denotes addition modulo 2%

from https://en.wikipedia.org/wiki/SHA-1

I Cryptography

 Terminology

— Plaintext: original message
— Ciphertext: encrypted plaintext
— Nonce: random number that is only used once
— Encrypt: turn plaintext into ciphertext
o C=Ex(P)
e Usually based on a one-way hash function
— Decrypt: turn ciphertext into plaintext
* P=Dy(C)
o Alternatively: P = Dy (Ex(P))
— Cryptographic system: set of D() and E() functions

I Cryptography

o Symmetric (P = Dg(Ex(P))) vs. asymmetric (P = Dyp(Exe(P)))
— Same key vs. key pair
— Private key vs. public/private keys
o Symmetric: Data Encryption Standard (DES)
— XOR-based operations with different 48-bit keys
— Fast to encrypt/decrypt, relies on robust secret keys
 Asymmetric: Rivest, Shamir, Adleman (RSA)
— Multiplication and modulus operations with large prime keys

— Signing (encrypt w/ private) and secure messaging (encrypt w/ public)
— Slow to encrypt/decrypt, relies on difficulty of prime factorization

I Authentication

e A secure channel provides security on an unsecured network

— Requires some kind of setup first

— Protects against interception, modification, and fabrication
e Cannot prevent interruption (recall CAP theorem)
— Issue: authentication (verifying the identity of the recipient)

— Issue: establishing shared secrets (after verifying identity)
e Security protocols

— Shared-key authentication (requires pairwise secrets)

- Needham-Schroeder authentication (uses central server)
— Key signing parties (physical exchange of keys)

— Diffie-Helman key exchange (uses public messaging)

I Shared-key authentication

e Basic challenge-response protocol
— Alice contacts Bob (“A™)

— Bob issues a challenge (“Rg”) and receives a response (R;
encrypted using shared key "K, 3"

— Alice also issues a challenge (“R,") and receives a similar response
— Issue: requires shared key

1

A >
o — E RB
@ 3
O K, s(Rp) p 2
= AB\"B noj
4 R, o
5
Kag(Ra)

from Tanenbaum and Van Steen (Ch. 9)

I Needham-Schroeder authentication

e Uses a central Key Distribution Center (KDC)

— Alice sends a nonce to the KDC to request communication with Bob

e The nonce prevents a replay attack using an old (compromised) Kg xoc
— Alice receives a new shared key (K, g) as well as an encrypted copy to send to Bob

— Bob and Alice then exchange challenges and responses using this shared key

Alice

'IR.. A Bl

2
K, «oc(Rar B Ka g Kol AKag))

o Ll |

K, g(Razh Kaxoc (A Kag)

KDC

—

Bob

dlﬁﬂ.ﬁmmq-ﬁa]‘

B

-

{KosRe=1]

Figure 9-17. The Needham-Schroeder authentication protocol.

from Tanenbaum and Van Steen (Ch. 9)

I Needham-Schroeder authentication

e Uses a central Key Distribution Center (KDC)

— Alice sends a nonce to the KDC to request communication with Bob

e The nonce prevents a replay attack using an old (compromised) Kg xoc
— Alice receives a new shared key (K, g) as well as an encrypted copy to send to Bob

— Bob and Alice then exchange challenges and responses using this shared key

'R, A B] >]
LAt O
= N - E
— K e (Bay By g K g inclAKag
o] g o
= Ka g(RaclKexoe (0.Ka p)) > 5
4
% Eﬂ.ﬁ,mnz -1.Rg)
Ky lPe—1] |

Figure 9-17. The Needham-Schroeder authentication protocol.

from Tanenbaum and Van Steen (Ch. 9)

I Needham-Schroeder authentication

e Uses a central Key Distribution Center (KDC)

— Alice sends a nonce to the KDC to request communication with Bob
e The nonce prevents a replay attack using an old (compromised) Kg «pc
— Alice receives a new shared key (K,) as well as an encrypted copy to send to Bob

— Bob and Alice then exchange challenges and responses using this shared key

— Kerberos is similar, but uses an Authentication Server (AS) to establish identity and
a Ticket Granting Server (TGS) to set up shared keys

—= 1 ——
= - a0 .
il il "
c 3 <
@ k] K, A (K K (A K) |7
Sl 4 = "—1 AAS P aTES ™asTes Vv P Tas
= 7 a i
i 2
L2 'E 5 %
= > @ PWD &
— | [
% 4[K astas (A Katgs) B K 4 1asl) 0
o)
- el = e SN e : b_
E > [uros @ KasKKpros ™ Kas)?
Figure 9-17. The Needham-Schroeder authentication protocol. Figure 9-23, Authentication in Kerberos.

@copy of shared @ from Tanenbaum and Van Steen (Ch. 9)

I Needham-Schroeder authentication

e Uses a central Key Distribution Center (KDC)

— Alice sends a nonce to the KDC to request communication with Bob
e The nonce prevents a replay attack using an old (compromised) Kg «pc
— Alice receives a new shared key (K,) as well as an encrypted copy to send to Bob

— Bob and Alice then exchange challenges and responses using this shared key

— Kerberos is similar, but uses an Authentication Server (AS) to establish identity and
a Ticket Granting Server (TGS) to set up shared keys

— 1 ——n —
= =i 2A] >
VA [0
o S .‘_313: (K K A(K 7
o = aas\"aTad)™ as Tas A TGS
< [« fpasswora?— & s
=
m [
& 0
2 [=]
2 > [Pwo |
r & e —— ——
R T (D L)
Figure 9-17. The Needham-Schroeder authentication protocol. Figure 9-23. Authentication in Kerberos.

@copy of shared @ from Tanenbaum and Van Steen (Ch. 9)

I Kerberos

:
login | i —p
0
| 9 'd:
S 4 2 r—— Ky ps (Katas: Kastes (A Ka 15))
< [€—password? 3
_ : Eg
PWD |—> 2
S : K astas (A Kates) B Kavas—>
< _ 2
z B.K,o) K B) =
— Ka1as (B Kag) Kpras(h Kag

Figure 9-23. Authentication in Kerberos.

Kgras (A Kap) Kap) >

Alice
Bob

2

Figure 9-24. Setting up a secure channel in Kerberos.

from Tanenbaum and Van Steen (Ch. 9)

I Public keys

* Private keys are used to sign documents by encrypting them
o A certificate I1s a signed document claiming to own a public key

— Only the public key can decrypt the document, proving it was
encrypted using the corresponding private key

o At a key signing party, participants exchange fingerprint
versions of their public keys

— This allows others to later sign a certificate containing a known public
key (thus vouching for its authenticity)

— Purely peer-to-peer; no central server required
e |ssues: scaling and certificate revocation

— Revocation lists and certificate lifetime limits

I Difflie-Helman key exchange

o Allows distributed entities to establish a

shared secret via unsecured channels

e Can be extended to more than two entities

e Resists man-in-the-middle attacks

— Third party pretends to be other conversant

5.

B.

Both Alice and Bob have arrived at the same value s, because, under moed p,

. Alice and Bob agree to use a modulus p = 23 and base g=5

Alice chooses a secret integer a = 6, then sends Bob A= g? mod p
« A=55mod23=8

Bob chooses a secret integer b = 15, then sends Alice B = g” mod p
« B=5Y%mod23=19

Alice computes s= B mod p
e 5=19%mod23=2

Bob computes s= A% mod p
e 5=8"mod23=2

Alice and Bob now share a secret (the number 2).

A” mod p = ¢"® mod p = ¢* mod p = B® mod p*
More specifically,
(9" mod p)’ mod p = (¢° mod p)* mod p

from https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Alice Bob

Common paint

Secret colours

I RO

\/
A

I RO

\/
A

Public transport

(assume
that mixture separation
is expensive)

) d
A
) @
A

Secret colours

i
(R

Common secret

Authorization

Access control mechanisms enforce authorization constraints

— Internal vs. external access control

— Firewalls prevent external access to a host or internal network
* Defends against Denial-of-Service (DoS) or distributed DoS (DDoS) attacks
— Access control matrices track user permissions

A directory service provides internal distributed access control

— Handles user management/permissions and password storage

— Often distributed and/or replicated among multiple servers

— Lightweight Directory Access Protocol (LDAP) for communication
— Authentication provided by protocols like Kerberos

— Example: Active Directory

I Auditing

e Access logs provide an audit trail for a system

— Who can access the logs? Who can modify them?

— Append-only logs provide guarantees against tampering using
checksums and/or cryptographic signing

— Bitcoin (and other cryptocurrencies) uses an append-only blockchain
of cryptographically-signed transactions to preserve financial integrity

* Demo: https://anders.com/blockchain/blockchain.html

Block i Block i+1 Block i+2
Data Data Data
Bob - Alice ($2
Alice . Bob ($5) A = C;;g%g) David Bob ($10)
Bob - Carol ($20) Alice - David ($7) Carol - Alice ($25)

. / Prev Hash Prev Hash Prev Hash
Nonce Nonce

Nonce

Curr Hash Curr Hash Curr Hash

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

