
  

CS 470
Spring 2017

Mike Lam, Professor

Synchronization and Consistency

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters 6, 7 and 11)

Various online sources

Lamport



  

Warm-up activity

● Break up into groups by table

● Suppose every person in your group is in a different
country

– The only communication mechanism is via email

● Devise a distributed approach to have everyone call a
given phone number at the exact same instant in time.



  

Synchronization

● In a shared-memory system:

– Core mechanism: mutual exclusion

– Conditions, semaphores, and barriers

● In a distributed-memory system:

– Core mechanism: message passing

– Coordinated clocks
● Absolute vs. logical

– Election and consensus algorithms

– Consistency models and protocols



  

Clocks / Timers

● Measuring time

– Movements of sun, moon, and stars

– Unwinding of wound spring

– Quartz crystal oscillating under tension

– Energy transitions of a caesium 133 atom

● Synchronizing absolute clocks

– Calendars and leap year/second adjustments
● Coordinated Universal Time (UTC)

– Clock skew
● Network Time Protocol (NTP)



  

Network Time Protocol

● Reference clocks (hardware-based)

● Stratums 1-15 and 16 (unsynced)

● 64-bit time values (<1 ns resolution)

Time offset:

Round-trip delay:

from https://en.wikipedia.org/wiki/Network_Time_Protocol



  

Logical clocks

● Lamport clocks / timestamps

– Invented by Leslie Lamport in 1978

– Core notion: "happens-before"
● Imposes a partial ordering on messages
● Increment local clock before sending
● Include local clock when sending

– Adjust local clock after communications
● Must preserve “happens-before” ordering
● Always forwards—never backwards!

– If a happened before b, then C(a) < C(b)
● Converse is not necessarily true!
● Does not capture any notion of causality

For more info:

http://dl.acm.org/citation.cfm?id=359563

0
2
4
6
8
10
12
14
16
18
20
22

P0

0
4
8
12
16
20
24
28
32
36
40
44

P1

0
8
16
24
32
40
48
56
64
72
80
88

P2

m
1

m
2

m
3

m
4

0
2
4
6
8
10
12
14
16
18
62
64

P0

0
4
8
12
16
20
24
28
57
61
65
69

P1

0
8
16
24
32
40
48
56
64
72
80
88

P2

m
1

m
2

m
3

m
4

P1 adjusts
its clock

P0 adjusts
its clock

OK

OK



  

Vector clocks

● Vector clocks restore a notion of causality

– Keep a vector of clock values instead of only one

– VCi[i] is the logical clock at process Pi

– VCi[j] = k means that Pi knows that k events have occurred at Pj (i.e., Pi's
knowledge of Pj's local time), any of which could have causality influence

from https://en.wikipedia.org/wiki/Vector_clock



  

Distributed mutual exclusion

● Clocks provide time-based synchronization

● What about task-based synchronization?

● How can we implement mutual exclusion in a
distributed system?



  

Distributed mutual exclusion

● Token-based (often used in ring networks)
 

● Permission-based

– Centralized (single coordinator)

  

– Decentralized (multiple coordinators, need majority vote)

 

 

 



  

Distributed mutual exclusion

● Token-based (often used in ring networks)
● Simple; slow; susceptible to lost tokens

● Permission-based

– Centralized (single coordinator)
● Easy to implement; single bottleneck and point of failure

– Decentralized (multiple coordinators, need majority vote)
● More resilient; can be slow; possibility of starvation

 

 



  

Election algorithms

● If a coordinator is needed, there are various election 
strategies available to choose one

● Bully algorithm

– Always defer to higher-numbered nodes

● Ring algorithm

– Enforce one-way election traffic (no token necessary)

● Wireless algorithms

– Choose the best coordinator (e.g., CPU speed, battery life, etc.)



  

Distributed consensus

● Elections (and related auctions) are a specialized form of the general
problem of determining consensus in a distributed system

● Paxos protocol: two-phase rounds

– Prepare / promise: A proposer creates a proposal with value N larger than
any value it has previously used and sends it to a quorum of acceptors, who
respond with a promise to ignore future proposals with a value less than N

– Accept / accepted: If a proposer receives enough promises, it sets a final
value M for its proposal and sends it to a quorum of acceptors, who accept it
if M is greater than any other proposals it has promised to

– Real protocol has multiple ways to handle failures and lack of consensus

  Client   Proposer     Acceptors
1   |         |          |  |  |
2   X-------->|          |  |  |    Request
3   |         X--------->|->|->|    Prepare(N)
4   |         |<---------X--X--X    Promise(N)
5   |         X--------->|->|->|    Accept(M)
6   |         |<---------X--X--X    Accepted(M)
7   |<--------X          |  |  |    Response



  

Distributed consensus

Idle
Proposer

send [Prepare] (n) [Request]

[Promise] (n/2+1)

Client

send [Request]

Acceptor

send [Promise]

[Event
Detected]

[Response]

WinningProposer

send [Accept] (n) [Accept]
/ send [Accepted]

[Prepare]

1

2 3

[Accepted] (n/2+1)
/ send [Response]

4

6

5

7

  Client   Proposer     Acceptors
1   |         |          |  |  |
2   X-------->|          |  |  |    Request
3   |         X--------->|->|->|    Prepare(N)
4   |         |<---------X--X--X    Promise(N)
5   |         X--------->|->|->|    Accept(M)
6   |         |<---------X--X--X    Accepted(M)
7   |<--------X          |  |  |    Response



  

Replication

● All of these protocols require a lot of communication

– Communication is expensive!

● Alternative: keep redundant data

– Replica: a copy of data
● In a distributed system, every process could be a separate replica

– Goal: improved availability or performance
● Related concepts: mirroring and caching
● Relieve single-node access bottlenecks

● Issue: keeping replicas consistent

– Propagating updates

– Events (reads/writes) will arrive at different times

– But maybe we’re ok with some inconsistency



  

Replication and consistency

● Theme: loosen consistency constraints to
decrease communication overhead

– Tradeoff: performance vs. consistency

Traditional databases:
ACID - Atomic, Consistent, Isolated, Durable

Distributed systems:
BASE - Basically Available, Soft-state, Eventually consistent



  

Replication

● Consistency model: contract between entities and data stores

– If the entities follow the rules, the data store will be consistent

● Data-centric models (global view)

– Strict / continuous consistency (absolute time)

– Sequential consistency (logical time)

– Causal consistency (logical causality)

● Client-centric models (local view)

– Monotonic reads

– Monotonic writes

– Read-your-writes

– Writes-follow-reads



  

Strict / continuous consistency

● All events are seen instantaneously by all nodes

– Issue: speed of light (~3 x 108 m/s) prevents instantaneous
updates, especially in large-scale distributed systems

– To be practical, designate an interval of allowable deviation

c · d

speed
of light

distance
traveled

1ms 1s 1min 24hr

(not to scale)

interval



  

Sequential consistency

● Every node sees events in the same order

– Events must have a total order (i.e., they must be linearizable)

– Related to Lamport clocks (proposed by the same person)

– Notation: "W(x)a" means "write value a to item x"
● (corresponding notation for reads)

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)b   R(x)a

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)a   R(x)b



  

Sequential consistency

● Every node sees events in the same order

– Events must have a total order (i.e., they must be linearizable)

– Related to Lamport clocks (proposed by the same person)

– Notation: "W(x)a" means "write value a to item x"
● (corresponding notation for reads)

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)b   R(x)a

Sequentially-consistent

P0:    W(x)a
P1:              W(x)b
P2:                         R(x)b             R(x)a
P3:                                   R(x)a   R(x)b

NOT sequentially-consistent



  

Causal consistency

● Causally-related events must be seen in order

– Reads are causally-related to corresponding writes

– Writes are causally-related to previous operations on the same node

– Related to the notion of causality from vector clocks

– To verify, build global causality chain and check each process’s view

P0:    W(x)a
P1:                        W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

P0:    W(x)a
P1:              R(x)a  W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b



  

Causal consistency

● Causally-related events must be seen in order

– Reads are causally-related to corresponding writes

– Writes are causally-related to previous operations on the same node

– Related to the notion of causality from vector clocks

– To verify, build global causality chain and check each process’s view

P0:    W(x)a
P1:                        W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

Causally-consistent

P0:    W(x)a
P1:              R(x)a  W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

NOT causally-consistent



  

Causal consistency

● Causally-related events must be seen in order

– Reads are causally-related to corresponding writes

– Writes are causally-related to previous operations on the same node

– Related to the notion of causality from vector clocks

– To verify, build global causality chain and check each process’s view

P0:    W(x)a
P1:                        W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

Causally-consistent

P0:    W(x)a
P1:              R(x)a  W(x)b
P2:                                   R(x)b   R(x)a
P3:                                   R(x)a   R(x)b

NOT causally-consistent

W(x)a R(x)a

W(x)b R(x)b

W(x)a R(x)a

W(x)b R(x)b



  

Sequential / causal consistency

● Is this sequence sequentially-consistent?

● Is it causally-consistent?

P0:    W(x)a                      W(x)c
P1:              R(x)a   W(x)b
P2:              R(x)a                       R(x)c   R(x)b
P3:              R(x)a                       R(x)b   R(x)c



  

Sequential / causal consistency

● Is this sequence sequentially-consistent?

● Is it causally-consistent?

P0:    W(x)a                      W(x)c
P1:              R(x)a   W(x)b
P2:              R(x)a                       R(x)c   R(x)b
P3:              R(x)a                       R(x)b   R(x)c

W(x)a R(x)a

W(x)b R(x)b

W(x)c R(x)c



  

Sequential / causal consistency

● Is this sequence sequentially-consistent?

● Is it causally-consistent?

P0:    W(x)a                      W(x)c
P1:              R(x)a   W(x)b
P2:              R(x)a                       R(x)c   R(x)b
P3:              R(x)a                       R(x)b   R(x)c

Causally-consistent, but
NOT sequentially-consistent

W(x)a R(x)a

W(x)b R(x)b

W(x)c R(x)c



  

Partial vs. total ordering

● Ordering: definition of “<” operator

– Usually over pairs of entities (for us, messages)

– Total ordering: definition of “<” for all pairs
● Depicted graphically using a line

– Partial ordering: definition of “<” for some pairs
● Depicted graphically using a graph or lattice

“<” ≡ “subset-of” (partial ordering)
from: https://en.wikipedia.org/wiki/Lattice_(order)

P0 P1 P2 P3

A

B

C D

E

F
C

D

E

FA

B

“<” ≡ “happens-before” (partial ordering)

“<” ≡ “less-than”
(total ordering)

1    2   3   4    5   6   7



  

Implication

● Sequential consistency implies causal consistency

– There is no way for the partial ordering of causal consistency to
contradict the total ordering implied by sequential consistency

● Both properties (writes before reads on same data & strict ordering for
events on single processes) used to build the partial ordering are
already enforced by any valid total ordering

– Thus, every sequentially-consistent sequence must also be
causally-consistent

– Colloquially: causal consistency is looser than sequential
consistency



  

Client-centric consistency

● Previous models focused on a global view of data

– Sometimes called data-centric consistency models

● In a distributed system, we may only be interested in
the local view at any given node

– This motivates client-centric consistency models



  

Client-centric consistency

● Original application: Bayou database system for mobile computing

– Developed in mid-1990s

– Massive number of replicas

– Multiple networks and unreliable connectivity

– Data-centric, global consistency models are infeasible

– Theme: loosen the constraints!

– Four different consistency models (not mutually exclusive)

For more info:
http://dl.acm.org/citation.cfm?id=504497



  

Monotonic reads / writes

● Monotonic reads: if a process reads X, any successive
read to X will see the same value or a more recent one

– i.e., the process will never see an older version

– e.g., distributed email database (messages shouldn’t disappear
when migrating between replicas)

● Monotonic writes: if a process writes X, any successive
write to X will see the effect of the first write

– i.e., newer writes must wait for older ones to finish

– e.g., wiki edits



  

Read-your-writes / Writes-follow-reads

● Read-your-writes: if a process writes X, any successive read to
X will see the effect of the write

– i.e., reads will never see old versions

– Closely related to monotonic reads

– Systems that often lack this consistency:
● Retrieving websites
● Updating passwords

● Writes-follow-reads: if a process reads X, any successive write
to X will see the same value or a more recent one

– i.e., writes will never see old versions

– e.g., posts to an email list



  

Replicas

● Server-initiated (e.g., mirroring)

– Updates are pushed to other replicas

● Client-initiated (e.g., caching)

– Updates are pulled from other replicas

– Write-through vs. write-back

● Peer-to-peer

– Nodes have symmetric roles

– Requires well-defined protocol for enforcing consistency



  

Consistency protocols

● Continuous consistency protocols

– Bounding numerical deviation (# of updates)

– Bounding staleness deviation (time of updates)

● Primary-based protocols

– Primary: one replica that coordinates all writes for a data item

– Remote-write: forward all writes to primary (similar to write-through)

– Local-write: periodic updates sent to primary (similar to write-back)

● Replicated-write protocols

– Active replication: multicast updates to all replicas
● Need a reliable and efficient multicast protocol

– Quorum-based voting: replicas vote on updates to replicas
● Need a distributed voting/consensus protocol



  

Distributed version control


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

