

CS 470
Spring 2017

Mike Lam, Professor

Networks and Naming

Content taken from IPP 2.3.3 and the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)

Various online sources (including openclipart.org)

Overview

● Topologies – how a network is arranged (hardware)

● Routing – how traffic navigates a network (hardware and software)

● Protocols – how machines communicate (software, low-level)

● IPC paradigms – how processes communicate (software, high-level)

● Naming – how hosts are identified in a system (cross-cutting)

Network topologies

● A topology is an arrangement of components or nodes
in a system

from https://en.wikipedia.org/wiki/Network_topology

Network topologies

● A topology is an arrangement of components or nodes
in a system

– Ring, star, line, and tree allow simultaneous connections
but disallow some pairs of point-to-point communication

– Fully connected and bus allow any-to-any communication
but do not scale well

Evaluating topologies

● Bandwidth: maximum rate at which a link can transmit data

– Throughput: measured rate of actual data transmission (usually less than bandwidth)

● Latency: time between start of send and reception of first data

● Diameter: maximum number of hops between nodes on a network

● Bisection: divide the network into two sections

– Bisection width: how many communications could happen simultaneously between the two
sections?

– Bisection bandwidth: what is the bandwidth between the sections?

● Important: how do these metrics scale as you add nodes?

Two different bisections of a network

Crossbar switches

● Switched interconnects allow
multiple simultaneous paths
between components

– (Graphically, use squares for
nodes and circles for switches)

● A crossbar switch uses a matrix
of potential connections to create
ad-hoc paths between nodes

Omega networks

● Omega network: crossbar of crossbars

– Each individual switch is a 2-by-2 crossbar

Butterfly networks

● Multi-stage network w/ dedicated switching nodes

– Easy routing based on binary host numbers (0=left, 1=right)

from https://en.wikipedia.org/wiki/Butterfly_network

HPC interconnects

● In an HPC system, the network is called an interconnect

– Common patterns: switched bus, mesh/torus, hypercube

– Connected via switches vs. connected directly

Toroidal Mesh

Our cluster (switched bus)

Hypercubes

● Inductive definition:

– 0-D hypercube: a single node

– n-D hypercube: two (n-1)-D hypercubes with connections
between corresponding nodes

● E.g., a 3-D hypercube contains two 2-D hypercubes

Fat trees

● Hierarchical tree-based topology

– Links near the root have a higher bandwidth

HPC Interconnect Technologies

● Ethernet: 10/100 Mbps – 100 Gbps

– Early versions used shared-medium coaxial cable

– Newer versions use twisted pair or fiber optic with hubs or switches

● InfiniBand (IB): 24-300 Gbps w/ 0.5μs latency

– Packet-based switched fabric

– Very loose API; more formal spec provided by OpenFabrics Alliance

– Used on many current high-performance clusters

– Vendors: Mellanox, Intel, and Oracle

● OmniPath

– New interconnect architecture by Intel; designed closely with Intel Phi

– "Layer 1.5" Link Transfer Protocol for reliable layer 2 transmission

Routing

● Circuit switching

– Paths are pre-allocated for an entire session

– All data is routed along the same path

● Packet switching

– Break data into independent, addressed packets

– Packets are routed independently

Routing

● Circuit switching

– Paths are pre-allocated for an entire session

– All data is routed along the same path

– Higher setup costs and fewer simultaneous communications

– Constant latency and throughput

● Packet switching

– Break data into independent, addressed packets

– Packets are routed independently

– No setup costs and no restriction on simultaneous communications

– Resiliency to network failures and changing conditions

– Variable (and often unpredictable) latency and throughput

Routing

Unicast
(one-to-one)

Anycast
(one-to-nearest)

Geocast
(one-to-proximate)

Multicast
(one-to-many)

Broadcast
(one-to-all)

from https://en.wikipedia.org/wiki/Routing#Delivery_schemes

IP multicast and Overlays

● IP multicast: technique for sending data to multiple
recipients over an IP network using UDP

– Group addressing (IGMP)

– Tree-based distribution

● Overlay: a network built on top of another network

– Distributed hash tables (e.g., Chord)

– XMPP – Jabber/Gtalk chat protocol

– Tor network

Chord

Tor network

● Overlay network for anonymity

● Onion routing: multiple layers of obfuscation

– At each layer, data is encrypted and sent to a random Tor relay

– Sequence of relays form a virtual circuit that is difficult to trace

– No single relay connects the source and destination directly

Networking principles

● Distributed system components are often unreliable

● How do we build a reliable network using unreliable hardware
and software?

Networking principles

● Distributed system components are often unreliable

● How do we build a reliable network using unreliable hardware
and software?

– Abstraction helps by hiding details where possible

– Protocols define well-structured communication patterns

– Layered / stacked protocols build on each other

– Each layer adds metadata to help solve a specific problem

● Another guiding principle: the end-to-end principle

– Application-specific functions ought to reside in the end hosts of a
network rather than in intermediary nodes whenever possible.

For more info:
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Networking protocols

● Routing: choosing a path through a network

● Datagram: self-contained, encapsulated package of data and
metadata capable of being routed

– Also called a frame: (layer 2), a packet (layer 3), or a segment (layer 4)

● Protocol: rules for exchanging data (often using datagrams)

● Checksums: data integrity verification mechanism

IPv4 header
(from https://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm)

Protocol design issues

● Connectionless vs. connection-oriented

– Is there a setup/teardown procedure required for
communication?

● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

● Persistent vs. transient communication

– Are messages stored by the middleware?

Protocol design issues

● Connectionless vs. connection-oriented

– Is there a setup/teardown procedure required for
communication?

– No setup costs vs. faster speed after connection

● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

– Easier to debug and verify vs. faster communication

● Persistent vs. transient communication

– Are messages stored by the middleware?

– Guaranteed delivery vs. simplicity of middleware

OSI model layers

1) Physical: Transmission of raw bits over a physical medium (Ethernet, 802.11)

2) Data link: Reliable transmission of frames between two nodes (FC, 802.11)

3) Network: Structured transmission on a multi-node network (IP, ICMP)

4) Transport: Reliable transmission on a multi-node network (TCP, UDP)

5) Session: Managed communication sessions (RPC, NFS)

6) Presentation: Encoding and conversion of data (HTML, XML, JSON)

7) Application: Application-level abstractions (FTP, HTTP, SSH, MPI)

IPC paradigms

● Inter-process communication (IPC)

– Message-passing
● Symmetric (SPMD) vs. asymmetric (differentiated hosts)

– Remote procedure calls

– Streaming-oriented

Berkeley / POSIX Sockets

● API for inter-process communication

– Originally designed for BSD

– Later evolved into a POSIX standard

– Often used for low-level TCP and UDP communication

– Hosts identified by address (usually IP) and port number

– Passes "messages" (packets) between hosts

– Can use Unix pipes if both endpoints are on a single host

Socket primitives

● Server

– Socket: Create a new endpoint

– Bind: Attach a local address to a socket

– Listen: Announce readiness for connections

– Accept: Block until a request arrives

● Client

– Connect: Attempt to establish a connection

● Server & client

– Send: Send data over a connection

– Receive: Receive data over a connection

– Close: Destroy a connection

MPI (Message Passing Interface)

● MPI_Send

● MPI_Recv

● MPI_Bcast

● MPI_Scatter

● MPI_Gather

● MPI_Allgather

● MPI_Reduce

● MPI_Allreduce

● MPI_Alltoall
from https://computing.llnl.gov/tutorials/parallel_comp/

Remote Procedure Call (RPC)

● Key idea: transparency

– It should look like the procedure call is happening locally

– Similar in spirit to PGAS remote memory accesses

– Implement server / client stubs to handle the call

● Parameter marshalling

– Preparing parameters for transmission over a network

Asynchronous RPC

Data streams

● Stream-based communication

– Popular in "big data" applications like MapReduce

● Simple vs. complex (multiple substreams)

● Timing variations

– Asynchronous: no timing constraints

– Synchronous: maximum end-to-end delay

– Isochronous: maximum and minimum delay

QoS concerns

● Quality of Service (QoS)

– Minimum required bit rate (bandwidth)

– Maximum delay to set up a session

– Maximum end-to-end delay (latency)

– Maximum delay variance (jitter)

– Maximum round-trip delay

– Possibility of expedited forwarding

– Synchronization mechanisms

– Examples: MPEG-2, HLS

Naming

● "What's in a name?"

– "That which we call a .com by any other TLD
would load just as quickly."

Addressing

● Concept of an entity vs. its address

● True identifiers

– Each identifier refers to at most one entity

– Each entity is referred to by at most one identifier

– Identifiers are never re-used at another time

● Name-to-address binding

– Name space: domain of all possible names

– Static vs. dynamic

– Central vs. decentralized
● Name server: central host responsible for maintaining bindings

Naming schemes

● Flat

● Structured

● Attribute-based

Flat naming

● Identifiers contain no location information

● Various lookup approaches

– Broadcast / multicast

– Forwarding pointers

– Proximity routing

● Examples: ARP, Chord

Distributed hash tables

● Chord uses an m-bit identifier space and modulo arithmetic

● Key k is stored at succ(k), the node with the smallest id ≥ k

● Each node maintains a finger table of forward shortcuts

● To look up k, repeatedly follow lookups in finger table

– Goal: halve distance to destination every hop

Structured naming

● Root vs. leaf nodes

● Absolute vs. relative names

– Global vs. local names

● Iterative vs. recursive resolution

● Linking and aliasing

– Hard vs. soft (symbolic) links

● Mounting and mount points

● Examples: file systems, DNS, NFS

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rhel_login01-root 50G 23G 28G 46% /
/dev/sda6 497M 206M 292M 42% /boot
nfs.cluster.cs.jmu.edu:/nfs/home 100G 4.6G 96G 5% /nfs/home
nfs.cluster.cs.jmu.edu:/nfs/scratch 2.0T 862G 1.2T 43% /scratch

IPv4

● IPv4: four octets w/ CIDR notation (/8, /16, etc.)

– Classful addressing: Class A, Class B, Class C

– IETF and IANA allocate addresses (32 bits - 4 billion total addresses)

– Published in 1981; now nearly exhausted

● Notable networks

– Private (10.0.0.0/8)

– Loopback (127.0.0.0/8)

– JMU (134.126.0.0/16)

– Private (192.168.0.0/16)

https://xkcd.com/195/
from https://en.wikipedia.org/wiki/IPv4

IPv4 map

from https://ant.isi.edu/address/browse/index.html

IPv6

● IPv6 published in 1998

– 128 bits - 3.4×1038 total addresses

– Eight groups of 16 bits (4 hex chars)

– 64-bit routing prefix, 64-bit host/interface identifier

– Slow uptake due to migration complications

from https://en.wikipedia.org/wiki/IPv6

IPv4 vs. IPv6

● The IPv6 name space is larger than you might think!

– In fact, there is NO WAY to draw the two address spaces to scale. If
IPv4 were a 1.6-inch square, IPv6 would be a square the size of the
solar system!

– 2128 ≈ 1038 ≫ the number of drops of water in all the world’s oceans
(1025) or the number of stars in the observable universe (1023)

– “If we had been assigning IPv6 addresses at a rate of 1 billion per
second since the earth was formed, we would have by now used up
less than one trillionth of the address space.”

– “We could assign an IPv6 address to every atom on the surface of
the earth – and have enough addresses left over for another
hundred earths.”

Sources:
● http://waitbutwhy.com/2014/11/1000000-grahams-number.html
● http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm
● http://www.brucebnews.com/2010/10/ipv6-and-really-large-numbers/

Attribute-based naming

● Human-friendly resource identifiers

● Storage of (key, value) pairs

● Often implemented with distributed hash tables

– Centralized vs. decentralized lookups

– You will implement this in P4!

● Semantic overlay networks

– Nodes maintain links to "semantically proximate" nodes

– Most useful in distributed peer-to-peer networks

– Exploit small-world effect

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

