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Overview

● Topologies – how a network is arranged (hardware)

● Routing – how traffic navigates a network (hardware and software)

● Protocols – how machines communicate (software, low-level)

● IPC paradigms – how processes communicate (software, high-level)

● Naming – how hosts are identified in a system (cross-cutting)



  

Network topologies

● A topology is an arrangement of components or nodes
in a system

from https://en.wikipedia.org/wiki/Network_topology



  

Network topologies

● A topology is an arrangement of components or nodes
in a system

– Ring, star, line, and tree allow simultaneous connections
but disallow some pairs of point-to-point communication

– Fully connected and bus allow any-to-any communication
but do not scale well



  

Evaluating topologies

● Bandwidth: maximum rate at which a link can transmit data

– Throughput: measured rate of actual data transmission (usually less than bandwidth)

● Latency: time between start of send and reception of first data

● Diameter: maximum number of hops between nodes on a network

● Bisection: divide the network into two sections

– Bisection width: how many communications could happen simultaneously between the two
sections?

– Bisection bandwidth: what is the bandwidth between the sections?

● Important: how do these metrics scale as you add nodes?

Two different bisections of a network



  

Crossbar switches

● Switched interconnects allow
multiple simultaneous paths
between components

– (Graphically, use squares for
nodes and circles for switches)

● A crossbar switch uses a matrix
of potential connections to create
ad-hoc paths between nodes



  

Omega networks

● Omega network: crossbar of crossbars

– Each individual switch is a 2-by-2 crossbar



  

Butterfly networks

● Multi-stage network w/ dedicated switching nodes

– Easy routing based on binary host numbers (0=left, 1=right)

from https://en.wikipedia.org/wiki/Butterfly_network



  

HPC interconnects

● In an HPC system, the network is called an interconnect

– Common patterns: switched bus, mesh/torus, hypercube

– Connected via switches vs. connected directly

Toroidal Mesh

Our cluster (switched bus)



  

Hypercubes

● Inductive definition:

– 0-D hypercube: a single node

– n-D hypercube: two (n-1)-D hypercubes with connections
between corresponding nodes

● E.g., a 3-D hypercube contains two 2-D hypercubes



  

Fat trees

● Hierarchical tree-based topology

– Links near the root have a higher bandwidth



  

HPC Interconnect Technologies

● Ethernet: 10/100 Mbps – 100 Gbps

– Early versions used shared-medium coaxial cable

– Newer versions use twisted pair or fiber optic with hubs or switches

● InfiniBand (IB): 24-300 Gbps w/ 0.5μs latency

– Packet-based switched fabric

– Very loose API; more formal spec provided by OpenFabrics Alliance

– Used on many current high-performance clusters

– Vendors: Mellanox, Intel, and Oracle

● OmniPath

– New interconnect architecture by Intel; designed closely with Intel Phi

– "Layer 1.5" Link Transfer Protocol for reliable layer 2 transmission



  

Routing

● Circuit switching

– Paths are pre-allocated for an entire session

– All data is routed along the same path

 

 

● Packet switching

– Break data into independent, addressed packets

– Packets are routed independently

 

 



  

Routing

● Circuit switching

– Paths are pre-allocated for an entire session

– All data is routed along the same path

– Higher setup costs and fewer simultaneous communications

– Constant latency and throughput

● Packet switching

– Break data into independent, addressed packets

– Packets are routed independently

– No setup costs and no restriction on simultaneous communications

– Resiliency to network failures and changing conditions

– Variable (and often unpredictable) latency and throughput



  

Routing

Unicast
(one-to-one)

Anycast
(one-to-nearest)

Geocast
(one-to-proximate)

Multicast
(one-to-many)

Broadcast
(one-to-all)

from https://en.wikipedia.org/wiki/Routing#Delivery_schemes



  

IP multicast and Overlays

● IP multicast: technique for sending data to multiple
recipients over an IP network using UDP

– Group addressing (IGMP)

– Tree-based distribution

● Overlay: a network built on top of another network

– Distributed hash tables (e.g., Chord)

– XMPP – Jabber/Gtalk chat protocol

– Tor network

Chord



  

Tor network

● Overlay network for anonymity

● Onion routing: multiple layers of obfuscation

– At each layer, data is encrypted and sent to a random Tor relay

– Sequence of relays form a virtual circuit that is difficult to trace

– No single relay connects the source and destination directly



  

Networking principles

● Distributed system components are often unreliable

● How do we build a reliable network using unreliable hardware
and software?



  

Networking principles

● Distributed system components are often unreliable

● How do we build a reliable network using unreliable hardware
and software?

– Abstraction helps by hiding details where possible

– Protocols define well-structured communication patterns

– Layered / stacked protocols build on each other

– Each layer adds metadata to help solve a specific problem

● Another guiding principle: the end-to-end principle

– Application-specific functions ought to reside in the end hosts of a
network rather than in intermediary nodes whenever possible.

For more info:
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf



  

Networking protocols

● Routing: choosing a path through a network

● Datagram: self-contained, encapsulated package of data and
metadata capable of being routed

– Also called a frame: (layer 2), a packet (layer 3), or a segment (layer 4)

● Protocol: rules for exchanging data (often using datagrams)

● Checksums: data integrity verification mechanism

IPv4 header
(from https://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm)



  

Protocol design issues

● Connectionless vs. connection-oriented

– Is there a setup/teardown procedure required for
communication?

● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

● Persistent vs. transient communication

– Are messages stored by the middleware?



  

Protocol design issues

● Connectionless vs. connection-oriented

– Is there a setup/teardown procedure required for
communication?

– No setup costs vs. faster speed after connection

● Synchronous vs. asynchronous

– Does the sender block after sending?
● E.g., MPI_Ssend vs. MPI_Isend

– Easier to debug and verify vs. faster communication

● Persistent vs. transient communication

– Are messages stored by the middleware?

– Guaranteed delivery vs. simplicity of middleware



  

OSI model layers

1) Physical: Transmission of raw bits over a physical medium (Ethernet, 802.11)

2) Data link: Reliable transmission of frames between two nodes (FC, 802.11)

3) Network: Structured transmission on a multi-node network (IP, ICMP)

4) Transport: Reliable transmission on a multi-node network (TCP, UDP)

5) Session: Managed communication sessions (RPC, NFS)

6) Presentation: Encoding and conversion of data (HTML, XML, JSON)

7) Application: Application-level abstractions (FTP, HTTP, SSH, MPI)



  

IPC paradigms

● Inter-process communication (IPC)

– Message-passing
● Symmetric (SPMD) vs. asymmetric (differentiated hosts)

– Remote procedure calls

– Streaming-oriented



  

Berkeley / POSIX Sockets

● API for inter-process communication

– Originally designed for BSD

– Later evolved into a POSIX standard

– Often used for low-level TCP and UDP communication

– Hosts identified by address (usually IP) and port number

– Passes "messages" (packets) between hosts

– Can use Unix pipes if both endpoints are on a single host



  

Socket primitives

● Server

– Socket: Create a new endpoint

– Bind: Attach a local address to a socket

– Listen: Announce readiness for connections

– Accept: Block until a request arrives

● Client

– Connect: Attempt to establish a connection

● Server & client

– Send: Send data over a connection

– Receive: Receive data over a connection

– Close: Destroy a connection



  

MPI (Message Passing Interface)

● MPI_Send

● MPI_Recv

● MPI_Bcast

● MPI_Scatter

● MPI_Gather

● MPI_Allgather

● MPI_Reduce

● MPI_Allreduce

● MPI_Alltoall
from https://computing.llnl.gov/tutorials/parallel_comp/



  

Remote Procedure Call (RPC)

● Key idea: transparency

– It should look like the procedure call is happening locally

– Similar in spirit to PGAS remote memory accesses

– Implement server / client stubs to handle the call

● Parameter marshalling

– Preparing parameters for transmission over a network



  

Asynchronous RPC



  

Data streams

● Stream-based communication

– Popular in "big data" applications like MapReduce

● Simple vs. complex (multiple substreams)

● Timing variations

– Asynchronous: no timing constraints

– Synchronous: maximum end-to-end delay

– Isochronous: maximum and minimum delay



  

QoS concerns

● Quality of Service (QoS)

– Minimum required bit rate (bandwidth)

– Maximum delay to set up a session

– Maximum end-to-end delay (latency)

– Maximum delay variance (jitter)

– Maximum round-trip delay

– Possibility of expedited forwarding

– Synchronization mechanisms

– Examples: MPEG-2, HLS



  

Naming

● "What's in a name?"

– "That which we call a .com by any other TLD
would load just as quickly."



  

Addressing

● Concept of an entity vs. its address

● True identifiers

– Each identifier refers to at most one entity

– Each entity is referred to by at most one identifier

– Identifiers are never re-used at another time

● Name-to-address binding

– Name space: domain of all possible names

– Static vs. dynamic

– Central vs. decentralized
● Name server: central host responsible for maintaining bindings



  

Naming schemes

● Flat

● Structured

● Attribute-based



  

Flat naming

● Identifiers contain no location information

● Various lookup approaches

– Broadcast / multicast

– Forwarding pointers

– Proximity routing

● Examples: ARP, Chord



  

Distributed hash tables

● Chord uses an m-bit identifier space and modulo arithmetic

● Key k is stored at succ(k), the node with the smallest id ≥ k

● Each node maintains a finger table of forward shortcuts

● To look up k, repeatedly follow lookups in finger table

– Goal: halve distance to destination every hop



  

Structured naming

● Root vs. leaf nodes

● Absolute vs. relative names

– Global vs. local names

● Iterative vs. recursive resolution

● Linking and aliasing

– Hard vs. soft (symbolic) links

● Mounting and mount points

● Examples: file systems, DNS, NFS

Filesystem                           Size  Used Avail Use% Mounted on
/dev/mapper/rhel_login01-root         50G   23G   28G  46% /
/dev/sda6                            497M  206M  292M  42% /boot
nfs.cluster.cs.jmu.edu:/nfs/home     100G  4.6G   96G   5% /nfs/home
nfs.cluster.cs.jmu.edu:/nfs/scratch  2.0T  862G  1.2T  43% /scratch



  

IPv4

● IPv4: four octets w/ CIDR notation (/8, /16, etc.)

– Classful addressing: Class A, Class B, Class C

– IETF and IANA allocate addresses (32 bits - 4 billion total addresses)

– Published in 1981; now nearly exhausted

● Notable networks

– Private (10.0.0.0/8)

– Loopback (127.0.0.0/8)

– JMU (134.126.0.0/16)

– Private (192.168.0.0/16)

https://xkcd.com/195/
from https://en.wikipedia.org/wiki/IPv4



  

IPv4 map

from https://ant.isi.edu/address/browse/index.html



  

IPv6

● IPv6 published in 1998

– 128 bits - 3.4×1038 total addresses

– Eight groups of 16 bits (4 hex chars)

– 64-bit routing prefix, 64-bit host/interface identifier

– Slow uptake due to migration complications

from https://en.wikipedia.org/wiki/IPv6



  

IPv4 vs. IPv6

● The IPv6 name space is larger than you might think!

– In fact, there is NO WAY to draw the two address spaces to scale. If
IPv4 were a 1.6-inch square, IPv6 would be a square the size of the
solar system!

– 2128 ≈ 1038 ≫ the number of drops of water in all the world’s oceans
(1025) or the number of stars in the observable universe (1023)

– “If we had been assigning IPv6 addresses at a rate of 1 billion per
second since the earth was formed, we would have by now used up
less than one trillionth of the address space.”

– “We could assign an IPv6 address to every atom on the surface of
the earth – and have enough addresses left over for another
hundred earths.”

Sources:
● http://waitbutwhy.com/2014/11/1000000-grahams-number.html
● http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm
● http://www.brucebnews.com/2010/10/ipv6-and-really-large-numbers/



  

Attribute-based naming

● Human-friendly resource identifiers

● Storage of (key, value) pairs

● Often implemented with distributed hash tables

– Centralized vs. decentralized lookups

– You will implement this in P4!

● Semantic overlay networks

– Nodes maintain links to "semantically proximate" nodes

– Most useful in distributed peer-to-peer networks

– Exploit small-world effect
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