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Parallel languages

● Writing efficient parallel code is hard

● We've covered two generic paradigms ...

– Shared-memory

– Distributed message-passing

● … and three specific technologies (but all in C!)

– Pthreads

– OpenMP

– MPI

● Can we make parallelism easier by changing our language?

– Similarly: Can we improve programmer productivity?



  

Productivity

● Economic definition:

● What does this mean for parallel programming?

– How do you measure input?
● Bad idea: size of programming team
● "The Mythical Man Month" by Frederick Brooks

– How do you measure output?
● Bad idea: lines of code

Productivity=Output
Input



  

Productivity vs. Performance

● General idea: Produce better code faster

– Better can mean a variety of things: speed, robustness, etc.

– Faster generally means time/personnel investment

● Problem: productivity often trades off with performance

– E.g., Python vs. C or Matlab vs. Fortran

– E.g., garbage collection or thread management

Why?



  

Complexity

● Core issue: handling complexity

● Tradeoff: developer effort vs. system effort

– Hiding complexity from the developer increases the
complexity of the system

– Higher burden on compiler and runtime systems

– Implicit features cause unpredictable interactions

– More middleware increases chance of interference and
software regressions

– In distributed systems: locality matters a lot



  

Holy Grail

Productivity 
AND 

performance



  

PGAS

● Partitioned Global Address Space (PGAS)

– Hybrid of distributed message-passing and shared-memory

– Programmer sees one global address space

– Compiler/runtime must sort out the communication

– Issue: Non-Uniform Memory Access (NUMA) effects

(PGAS)



  

Parallel Languages (Mostly PGAS)

● Erlang [Ericsson, 1986], Haskell [1990], and Clojure [2007]

– Functional languages; most include explicit or implicit parallelism

● High Performance Fortran (HPF) [1993]

– Designed by committee

● Academic languages

– ZPL [UW, 1994]

– Cilk [MIT, 1994] and Cilk Plus [Intel, 2010]

– Titanium [UC Berkeley, 1998]

● Coarray Fortran (CAF) [1998]

– Now officially part of the Fortran 2008 standard

● Unified Parallel C (UPC) [1999]

● HPCS languages [starting 2002]

● Julia [2012]



  

High-Performance Fortran

● Motivation: higher abstractions for parallelism

– Predefined data distributions and parallel loops

– Optional directives for parallelism (similar to OpenMP)

● Development based on Fortran 90

– Proposed 1991 w/ intense design efforts in early 1990s

– Wide variety of influences on the design committee

– Standardized in 1993 and presented at Supercomputing '93

For the full story, see "The Rise and Fall of High Performance Fortran: An Historical Object Lesson"
http://dl.acm.org/citation.cfm?id=1238851



  

High-Performance Fortran

● Issues

– Immature compilers and no reference implementation

– Poor support for non-standard data distributions

– Poor code performance; difficult to optimize and tune

– Slow uptake among the HPC community

● Legacy

– Effort in 1995-1996 to fix problems with HPF 2.0 standard

– Eventually dropped in popularity and was largely abandoned

– Some ideas still had a profound influence on later efforts



  

ZPL  ("Z-level Programming Language")

● Array programming language (1994)

– All parallelism is implicit

– Regular data structures with grid alignments

– Explicit regions and directions

TW = "the world"
NN = "num of neighbors"

@^  "wrap-at" operator
       (shifts array/matrix)

<<  reduction operator
       (applied here on boolean OR)

region specifier

field of cells

Directly influenced the
Chapel language



  

Co-Array Fortran (CAF) [1998]

butterfly reduction pattern

CAF was added to the
Fortran standard in 2008

remote memory access

at end, all values of x
are identical

Extension to Fortran



  

Unified Parallel C (UPC) [1999]

blocking factor

UPC is still used, with
multiple distributions

Extension to C

threads only execute iterations
where affinity is local

shared/global arrays

SPMD and remote
data accesses

parallel
for-loop

explicit thread ID check



  

DARPA HPCS Program

● High Productivity Computing Systems (HPCS)

● Launched in 2002 with five teams (later narrowed to three)

– Cray, HP, IBM, SGI, Sun

● Language efforts

– X10 [IBM, 2004]
● Based on Java runtime environment

– Fortress [Sun, 2008]
● Unique idea: "typesetting" code
● Discontinued in 2012 due to type system complications

– Chapel [Cray, 2009]
● "Cascade High Productivity Language"



  

X10

X10 is still used, but seems
to have lost momentum

Asynchronous PGAS



  

Fortress

spawn x.region do
    f(x)
end

Computes f(x) wherever x is currently stored

Σ  Π

Officially discontinued in 2012;
source code is still available

Hybrid async PGAS and implicit parallelism

Valid operators



  

Chapel

● New language designed for parallel computation

– Heavily influenced by ZPL and High-Performance Fortran

● Design is based on user requirements

– Recent graduates: "a language similar to Python, Matlab, Java, etc."

– HPC veterans: "a language that gives me complete control"

– Scientists: "a language that lets me focus on the science"

● Chapel stated goals:

– "A language that lets scientists express what they want …

– … without taking away the control that veterans want …

– … in a package that's as attractive as recent graduates want."



  

Chapel themes

● Open source compiler (Apache license)

– Uses Pthreads for local concurrency

– Uses GASNet library for distributed communication

● Multi-resolution parallelism

– Multiple levels of abstraction (task and data parallelism)

– Higher levels build on lower levels

– Developers can mix-and-match as desired

● Locality control

– PGAS memory model; developers control data locales

● Reduced gap between HPC and mainstream

– Type inference, generic programming, optional OOP



  

Chapel examples

var done: bool = true;     // ’done’ is a boolean variable, initialized to ’true’

proc abs(x: int): int {    // a procedure to compute the absolute value of ’x’
  if (x < 0) then
    return -x;
  else
    return x;
}

var Hist: [-3..3] int,               // a 1D array of integers
    Mat: [0..#n, 0..#n] complex,     // a 2D array of complexes
    Tri: [i in 1..n] [1..i] real;    // a "triangular" skyline array

var count = 0;             // ’0’ is an integer, so ’count’ is too
const area = 2*r;          // if ’r’ is an int/real/complex, ’area’ will be too
var len = computeLen();    // ’len’ is whatever type computeLen() returns
config const n = 10;       // can be overridden by "--n=X" on the command line

for i in 1..n do           // print 1, 2, 3, ..., n
  writeln(i);

for elem in Mat do         // increment all elements in Mat
  elem += 1;



  

Chapel examples

domain definition

implicit data parallelism

average
neighbors' values

explicit task parallelism

arbitrary domain array parameter



  

Execution models

● Fully SPMD

– Fixed number of threads spawn at launch and diverge based on
thread index checks (similar to MPI)

● Asynchronous PGAS

– Single main thread; worker threads spawn automatically in marked
parallel regions (similar to OpenMP)

● Fully Implicit

– Threads spawned dynamically by runtime system as appropriate; no
explicit parallel regions



  

Topologies and data access

● Topologies

– Flat (indexed)

– Rectangular / hypercube / torus / mesh

– Hierarchical

● Access cost function

– Two-level (local vs. remote)

– Multi-level

● Data distribution

– Implicit vs. explicit

– Regular vs. irregular (domain uniformity)

● Remote data accesses

– Implicit vs. explicit

– Local vs. global



  

PGAS Language Summary

Lessons learned??
For more details and full paper:
http://dl.acm.org/citation.cfm?id=2716320

lower ≈ newer



  

Julia

● New dynamic language for numeric computing

– Combines ideas from Python, Matlab, R, and Fortran

– Mantra: "vectorize when it feels right"

– Core is implemented in C/C++, JIT-compiled to native machine code

– Includes a REPL

– IJulia browser-based graphical notebook interface

● Goal: never make the developer resort to using two languages

– Similar philosophy in Chapel community
function mandelbrot(z)
    c = z
    maxiter = 80
    for n = 1:maxiter
        if abs(z) > 2
            return n-1
        end
        z = z^2 + c
    end
    return maxiter
end

Calculate Mandelbrot function

nheads = @parallel (+) for i=1:100000000
  int(randbool())
end

Simulate coin tosses in parallel



  

Python for HPC

● Primary strength: writeability

– Easy-to-learn

– Low overhead and boilerplate

● Secondary strength: libraries & frameworks

– NumPy (supports large, multi-dimensional matrices)

– SciPy (scientific computing library that uses NumPy)

– SageMath (open source Mathematica/Matlab alternative)

– IPython (interactive parallel computing)

– Many others!



  

Holy Grail impossible?

Challenge: design your
own parallel language!

What would it
look like?
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