

CS 470
Spring 2017

Mike Lam, Professor

Parallel Languages

Graphics and content taken from the following:
http://dl.acm.org/citation.cfm?id=2716320
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://arxiv.org/pdf/1411.1607v4.pdf

Parallel languages

● Writing efficient parallel code is hard

● We've covered two generic paradigms ...

– Shared-memory

– Distributed message-passing

● … and three specific technologies (but all in C!)

– Pthreads

– OpenMP

– MPI

● Can we make parallelism easier by changing our language?

– Similarly: Can we improve programmer productivity?

Productivity

● Economic definition:

● What does this mean for parallel programming?

– How do you measure input?
● Bad idea: size of programming team
● "The Mythical Man Month" by Frederick Brooks

– How do you measure output?
● Bad idea: lines of code

Productivity=Output
Input

Productivity vs. Performance

● General idea: Produce better code faster

– Better can mean a variety of things: speed, robustness, etc.

– Faster generally means time/personnel investment

● Problem: productivity often trades off with performance

– E.g., Python vs. C or Matlab vs. Fortran

– E.g., garbage collection or thread management

Why?

Complexity

● Core issue: handling complexity

● Tradeoff: developer effort vs. system effort

– Hiding complexity from the developer increases the
complexity of the system

– Higher burden on compiler and runtime systems

– Implicit features cause unpredictable interactions

– More middleware increases chance of interference and
software regressions

– In distributed systems: locality matters a lot

Holy Grail

Productivity
AND

performance

PGAS

● Partitioned Global Address Space (PGAS)

– Hybrid of distributed message-passing and shared-memory

– Programmer sees one global address space

– Compiler/runtime must sort out the communication

– Issue: Non-Uniform Memory Access (NUMA) effects

(PGAS)

Parallel Languages (Mostly PGAS)

● Erlang [Ericsson, 1986], Haskell [1990], and Clojure [2007]

– Functional languages; most include explicit or implicit parallelism

● High Performance Fortran (HPF) [1993]

– Designed by committee

● Academic languages

– ZPL [UW, 1994]

– Cilk [MIT, 1994] and Cilk Plus [Intel, 2010]

– Titanium [UC Berkeley, 1998]

● Coarray Fortran (CAF) [1998]

– Now officially part of the Fortran 2008 standard

● Unified Parallel C (UPC) [1999]

● HPCS languages [starting 2002]

● Julia [2012]

High-Performance Fortran

● Motivation: higher abstractions for parallelism

– Predefined data distributions and parallel loops

– Optional directives for parallelism (similar to OpenMP)

● Development based on Fortran 90

– Proposed 1991 w/ intense design efforts in early 1990s

– Wide variety of influences on the design committee

– Standardized in 1993 and presented at Supercomputing '93

For the full story, see "The Rise and Fall of High Performance Fortran: An Historical Object Lesson"
http://dl.acm.org/citation.cfm?id=1238851

High-Performance Fortran

● Issues

– Immature compilers and no reference implementation

– Poor support for non-standard data distributions

– Poor code performance; difficult to optimize and tune

– Slow uptake among the HPC community

● Legacy

– Effort in 1995-1996 to fix problems with HPF 2.0 standard

– Eventually dropped in popularity and was largely abandoned

– Some ideas still had a profound influence on later efforts

ZPL ("Z-level Programming Language")

● Array programming language (1994)

– All parallelism is implicit

– Regular data structures with grid alignments

– Explicit regions and directions

TW = "the world"
NN = "num of neighbors"

@^ "wrap-at" operator
 (shifts array/matrix)

<< reduction operator
 (applied here on boolean OR)

region specifier

field of cells

Directly influenced the
Chapel language

Co-Array Fortran (CAF) [1998]

butterfly reduction pattern

CAF was added to the
Fortran standard in 2008

remote memory access

at end, all values of x
are identical

Extension to Fortran

Unified Parallel C (UPC) [1999]

blocking factor

UPC is still used, with
multiple distributions

Extension to C

threads only execute iterations
where affinity is local

shared/global arrays

SPMD and remote
data accesses

parallel
for-loop

explicit thread ID check

DARPA HPCS Program

● High Productivity Computing Systems (HPCS)

● Launched in 2002 with five teams (later narrowed to three)

– Cray, HP, IBM, SGI, Sun

● Language efforts

– X10 [IBM, 2004]
● Based on Java runtime environment

– Fortress [Sun, 2008]
● Unique idea: "typesetting" code
● Discontinued in 2012 due to type system complications

– Chapel [Cray, 2009]
● "Cascade High Productivity Language"

X10

X10 is still used, but seems
to have lost momentum

Asynchronous PGAS

Fortress

spawn x.region do
 f(x)
end

Computes f(x) wherever x is currently stored

Σ Π

Officially discontinued in 2012;
source code is still available

Hybrid async PGAS and implicit parallelism

Valid operators

Chapel

● New language designed for parallel computation

– Heavily influenced by ZPL and High-Performance Fortran

● Design is based on user requirements

– Recent graduates: "a language similar to Python, Matlab, Java, etc."

– HPC veterans: "a language that gives me complete control"

– Scientists: "a language that lets me focus on the science"

● Chapel stated goals:

– "A language that lets scientists express what they want …

– … without taking away the control that veterans want …

– … in a package that's as attractive as recent graduates want."

Chapel themes

● Open source compiler (Apache license)

– Uses Pthreads for local concurrency

– Uses GASNet library for distributed communication

● Multi-resolution parallelism

– Multiple levels of abstraction (task and data parallelism)

– Higher levels build on lower levels

– Developers can mix-and-match as desired

● Locality control

– PGAS memory model; developers control data locales

● Reduced gap between HPC and mainstream

– Type inference, generic programming, optional OOP

Chapel examples

var done: bool = true; // ’done’ is a boolean variable, initialized to ’true’

proc abs(x: int): int { // a procedure to compute the absolute value of ’x’
 if (x < 0) then
 return -x;
 else
 return x;
}

var Hist: [-3..3] int, // a 1D array of integers
 Mat: [0..#n, 0..#n] complex, // a 2D array of complexes
 Tri: [i in 1..n] [1..i] real; // a "triangular" skyline array

var count = 0; // ’0’ is an integer, so ’count’ is too
const area = 2*r; // if ’r’ is an int/real/complex, ’area’ will be too
var len = computeLen(); // ’len’ is whatever type computeLen() returns
config const n = 10; // can be overridden by "--n=X" on the command line

for i in 1..n do // print 1, 2, 3, ..., n
 writeln(i);

for elem in Mat do // increment all elements in Mat
 elem += 1;

Chapel examples

domain definition

implicit data parallelism

average
neighbors' values

explicit task parallelism

arbitrary domain array parameter

Execution models

● Fully SPMD

– Fixed number of threads spawn at launch and diverge based on
thread index checks (similar to MPI)

● Asynchronous PGAS

– Single main thread; worker threads spawn automatically in marked
parallel regions (similar to OpenMP)

● Fully Implicit

– Threads spawned dynamically by runtime system as appropriate; no
explicit parallel regions

Topologies and data access

● Topologies

– Flat (indexed)

– Rectangular / hypercube / torus / mesh

– Hierarchical

● Access cost function

– Two-level (local vs. remote)

– Multi-level

● Data distribution

– Implicit vs. explicit

– Regular vs. irregular (domain uniformity)

● Remote data accesses

– Implicit vs. explicit

– Local vs. global

PGAS Language Summary

Lessons learned??
For more details and full paper:
http://dl.acm.org/citation.cfm?id=2716320

lower ≈ newer

Julia

● New dynamic language for numeric computing

– Combines ideas from Python, Matlab, R, and Fortran

– Mantra: "vectorize when it feels right"

– Core is implemented in C/C++, JIT-compiled to native machine code

– Includes a REPL

– IJulia browser-based graphical notebook interface

● Goal: never make the developer resort to using two languages

– Similar philosophy in Chapel community
function mandelbrot(z)
 c = z
 maxiter = 80
 for n = 1:maxiter
 if abs(z) > 2
 return n-1
 end
 z = z^2 + c
 end
 return maxiter
end

Calculate Mandelbrot function

nheads = @parallel (+) for i=1:100000000
 int(randbool())
end

Simulate coin tosses in parallel

Python for HPC

● Primary strength: writeability

– Easy-to-learn

– Low overhead and boilerplate

● Secondary strength: libraries & frameworks

– NumPy (supports large, multi-dimensional matrices)

– SciPy (scientific computing library that uses NumPy)

– SageMath (open source Mathematica/Matlab alternative)

– IPython (interactive parallel computing)

– Many others!

Holy Grail impossible?

Challenge: design your
own parallel language!

What would it
look like?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

