Ll L oo Hallo Welt!
CS 470 Hij Vél:)I:j! Hello World!
Ciao Modo

Spring 2017 AN A TA

iHold mundo! X2 R{F7 !
Salut le Monde!

Mike Lam, Professor

Parallel Languages

Graphics and content taken from the following:

http://dl.acm.org/citation.cfm?id=2716320
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://arxiv.org/pdf/1411.1607v4.pdf

I Parallel languages

» Writing efficient parallel code is hard
* \We've covered two generic paradigms ...

— Shared-memory
— Distributed message-passing

e ... and three specific technologies (but all in C!)

— Pthreads
- OpenMP
- MPI

e Can we make parallelism easier by changing our language?

— Similarly: Can we improve programmer productivity?

I Productivity

Output
Input

e Economic definition: Productivity =

 What does this mean for parallel programming?

— How do you measure input?

e Bad idea: size of programming team
e "The Mythical Man Month" by Frederick Brooks

— How do you measure output?

e Bad idea: lines of code

I Productivity vs. Performance

e General iIdea: Produce better code faster

— Better can mean a variety of things: speed, robustness, etc.
— Faster generally means time/personnel investment

* Problem: productivity often trades off with performance

- E.g., Python vs. C or Matlab vs. Fortran
- E.g., garbage collection or thread management

Why?

I Complexity

e Core issue: handling complexity

e Tradeoff: developer effort vs. system effort

Hiding complexity from the developer increases the
complexity of the system

Higher burden on compiler and runtime systems
Implicit features cause unpredictable interactions

More middleware increases chance of interference and
software regressions

In distributed systems: locality matters a lot

Productivity
AND
performance
/

I PGAS

o Partitioned Global Address Space (PGAS)

— Hybrid of distributed message-passing and shared-memory
— Programmer sees one global address space

— Compiler/runtime must sort out the communication

— Issue: Non-Uniform Memory Access (NUMA) effects

i' “
i A (] (]
; 3
. \ [] (]
‘ "
i " v 0 (]
’ “
4 '
'
", '
\
N '
- ‘\ .-
3
L. (] i [] s
[] '
[]
[] '

(a) Message-passing (b) Partitioned-memory (c) Shared-memory
(PGAS)

I Parallel Languages (Mostly PGAS)

Erlang [Ericsson, 1986], Haskell [1990], and Clojure [2007]
— Functional languages; most include explicit or implicit parallelism
High Performance Fortran (HPF) [1993]

— Designed by committee

Academic languages

- ZPL [UW, 1994]
— Cilk [MIT, 1994] and Cilk Plus [Intel, 2010]
— Titanium [UC Berkeley, 1998]

Coarray Fortran (CAF) [1998]
— Now officially part of the Fortran 2008 standard
Unified Parallel C (UPC) [1999]

HPCS languages [starting 2002]
Julia [2012]

I High-Performance Fortran

e Motivation: higher abstractions for parallelism

— Predefined data distributions and parallel loops
— Optional directives for parallelism (similar to OpenMP)

e Development based on Fortran 90

— Proposed 1991 w/ intense design efforts in early 1990s
— Wide variety of influences on the design committee
— Standardized in 1993 and presented at Supercomputing '93

REAL A (1000,1000), B(1000,1000)
!HPF$ DISTRIBUTE A (BLOCK, *)
'HPF$ ALIGN B(I,J) WITH A(I,J)
DO J =2, N
DOI =2, N
AC(I,J)=(A(I,J+1)+2%A(I,J)+A(I,J-1))*0.25 &
+ (B(I+1,J)+2xB(I,J)+B(I-1,J))*0.25

Listing 8: Simple relaxation loop in HPF.

1O W N

For the full story, see "The Rise and Fall of High Performance Fortran: An Historical Object Lesson”
http://dl.acm.org/citation.cfm?id=1238851

I High-Performance Fortran

e |Ssues
— Immature compilers and no reference implementation
— Poor support for non-standard data distributions
— Poor code performance; difficult to optimize and tune
— Slow uptake among the HPC community
* Legacy
— Effort in 1995-1996 to fix problems with HPF 2.0 standard
— Eventually dropped in popularity and was largely abandoned
— Some ideas still had a profound influence on later efforts

I /ZPL ("z-level Programming Language")

e Array programming language (1994)

— All parallelism is implicit

— Regular data structures with grid alignments

— EXxplicit regions and directions

TW = "the world" ;
NN = "num of neighbors" _ 5
5

6

7

8

9

10

11

region specifier 12

15

16

17

<< reduction operator

program Life;

config const n : integer/ field of cells
region R = [1..n, 1..n];
direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];
w = [0, =1; e = 1[0, 1];
ew = [1, =-1); o = [1, 0]l; se = [1, 11:
var TW : [R] boolean;
NN : [R] sbyte; @n "wrap-at" operator
procedure Life(); / (shifts array/matrix)
begin -- Initialize the world
[R] repeat
NN := TW@"nw + TW@ " no + TW@ " ne
+ TW@ "w + TW~ Qe
+ TW@"sw + TW@"so + TWQ@ se; - -
IV := (TN & NN = 2) | CHN = 3) Directly influenced the
until '(]<< TW); Chapel language
end;

/ Listing 9: Conway’s Game of Life in ZPL.

(applied here on boolean OR)

O 0o~ Ot & Wk =

at end, all values of x
are identical

Extension to Fortran

1 INTEGER n 1 INTEGER n [*]
RS B s
3 n=25 3 n[pl] =5
(a) Allocate private integer. (b) Allocate shared integer

by creating a co-array.

Fig. 7: Both code fragments allocate one integer n for each place.

! global_sum

INTEGER :: x(n) [*]

INTEGER :: local_temp(n)
INTEGER :: me, mypartner
INTEGER :: n, bit, i, iterations

array with a co-array
array without a co-array
indices of places

other wvariables

B e T

iterations = log2_images ()

bit = 1
me = this_image (x) _
DO i = iterations butterfly reduction pattern

mypartner = xor(me, bit
hijt = shiftl(bit,1)

sync_a ! barrier remote memory access
local_temp(:) = x(:)[mypartner]
CALL sync_all () ! barrier
2L} = 2{2) + loeal _tempi(:)
RN CAF was added to the
Listing 1: Sum reduction of arrays in CAF. Fortran standard in 2008

parallel
for-loop

© 00 ~J30 Ot W=

Extension to C

blocking factor shared/global arrays
shared uints_t orig[N][N], edge[N][N];
int Sobe
int i,j,d1,d2; threads only execute iterations
double magnitude; where affinity is local
znzt cond step
upc forall(1; i<N-1; i++; T [0]1) {

¥ J<u-1; J++) {
= (int) origl[i-1][j+1] - origli-1]1[j-1];
ciint) origii Jlji¥l]l - oeiglds 1L1-113 << 1
d1 += (int) origl[i+1]1[j+1] - origli+11[j-11; SPMD and remote
42 = (imt) origli-1ll)-1] - sesgli®ill]~11] data accesses
a2 += {{int) origliz-1lL] 1 - oceiglisdil] 13 << 1;
d2 += (int) origii-11[1+i] origli+1][}+1];
magnitude = sqrt(dl*d1+d2*d2)
edge[i]l[j] = magnitude>255 ? 255 : (uint8_t)magnitude;
}

¥
if (MYTHREAD == 0) explicit thread ID check
printf ("DONE\n");

return 0;
}

Listing 3: Parallel edge detection using Sobel operators in UPC.

UPC is still used, with
multiple distributions

I DARPA HPCS Program

* High Productivity Computing Systems (HPCS)
 Launched in 2002 with five teams (later narrowed to three)
- Cray, HP, IBM, SGI, Sun
 Language efforts
— X10 [IBM, 2004]

e Based on Java runtime environment
— Fortress [Sun, 2008]

e Unique idea: "typesetting" code
e Discontinued in 2012 due to type system complications

— Chapel [Cray, 2009]
e "Cascade High Productivity Language"

Asynchronous PGAS

|
2
3
4
5
6
[
8
9

val initializer = (i:Point) => {
val r = new Random();
var local_result:double = 0.0D;
for tc In 1..8) {
val x = r.nextDouble();
val y = r.nextDouble();
if ((x*x + y*xy) <= 1.0)
local_result ++;
}
local_result
};
val result_array = DistArray.make[Double] (Dist.makeUnique(), initializer);
val sum_reducer = (x:Double, y:Double) => { x + y };
val pi = 4 x result_array.reduce(sum_reducer, 0.0) / (N * Place.MAX_PLACES);

Listing 6: Estimating 7 using Monte Carlo method in X10.

X10 is still used, but seems
to have lost momentum

Hybrid async PGAS and implicit parallelism

spawn x.region do
f(x)
end

Computes f(x) wherever x is currently stored

3O W=

var a : RR64 = 0.0
var b : RR64 = 0.0
var ¢ : RR64 = 0.0
DELTA = b"2 - 4 a c
x_.1 = (-b - SQRT DELTA)/(2 a)
x_2 = (-b + SQRT DELTA)/(2 a)

2. 11

Valid operators

var a:R64 = 0.0
var b:R64 = 0.0
var ¢:R64 = 0.0

A=b —-4ac
_—b—vA

X

(a) Small example program in Fortress (b) Small example program in Fortress that

without unicode characters.

supports unicode characters.

Officially discontinued in 2012;
source code is still available

I Chapel

 New language designed for parallel computation
— Heavily influenced by ZPL and High-Performance Fortran
e Design is based on user requirements
- Recent graduates: "a language similar to Python, Matlab, Java, etc."
- HPC veterans: "a language that gives me complete control"
— Scientists: "a language that lets me focus on the science"
e Chapel stated goals:
- "A language that lets scientists express what they want ...

— ... without taking away the control that veterans want ...
— ... In a package that's as attractive as recent graduates want."

I Chapel themes

Open source compiler (Apache license)

— Uses Pthreads for local concurrency
— Uses GASNet library for distributed communication

Multi-resolution parallelism

— Multiple levels of abstraction (task and data parallelism)
— Higher levels build on lower levels
— Developers can mix-and-match as desired

Locality control

- PGAS memory model; developers control data locales
Reduced gap between HPC and mainstream

— Type inference, generic programming, optional OOP

Chapel examples

var done: bool = true; // '"done’ is a boolean variable, initialized to ’true’

proc abs(x: int): int { // a procedure to compute the absolute value of ’x’
if (x < 0) then
return -x;

else
return x;
b
var Hist: [-3..3] int, // a 1D array of integers
Mat: [0..#n, O..#n] complex, // a 2D array of complexes
Tri: [1 in 1..n] [1..1] real; // a "triangular" skyline array
var count = 0; // "0’ is an integer, so ‘count’ is too
const area = 2*r; // if 'r’ 1s an int/real/complex, ’area’ will be too
var len = computelLen(); // "len’ 1is whatever type computeLen() returns
config const n = 10; // can be overridden by "--n=X" on the command line
for i in 1..n do // print 1, 2, 3, ..., n

writeln(1i);

for elem in Mat do // increment all elements 1n Mat
elem += 1;

C O30k N =

WO ~30 Otk W -

[
N = o

domain definition

const BigD = {0..n+1, 0..n+1} dmapped Block(boundingBox=[0..n+1, 0..n+1]),
D: subdomain(BigD) = {1..n, 1..n};
var A, Temp: [BigD] real;

dmplicit data parallelism
forall) (i,j) in D do avera
ge
suplil,j] = CAli~-1,)]1 + AL%%1,3] » Al1,3~1] « RQ3,J+11) 7 4; : .
const delta = max reduce abs(A[D] - Temp[D]); neighbors’ values
A[D] = Temp[D];
} while (delta > epsilon);

Listing 4: Jacobi iteration example in Chapel (data parallel).

arbitrary domain array parameter

proc quickSort(arr:
thresh = log2(here.numCores()), depth = 0,

low: int = D.low, high: int = D.high) {
if high - low < 8 {
bubbleSort (arr, low, high);
} else {
const pivotVal = findPivot (arr, low, high);
const pivotLoc = partition(as ow, high, pivotVal);
serial (depth >= thresh) explicit task parallelism
quickSort (arr, thresh, depth+I, low, pivotLoc-1);

quickSort (arr, thresh, depth+1, pivotLoc+1l, high);
i

Listing 5: Parallel Quicksort example in Chapel (task parallel).

I Execution models

e Fully SPMD

— Fixed number of threads spawn at launch and diverge based on
thread index checks (similar to MPI)

e Asynchronous PGAS

— Single main thread; worker threads spawn automatically in marked
parallel regions (similar to OpenMP)

o Fully Implicit

— Threads spawned dynamically by runtime system as appropriate; no
explicit parallel regions

I Topologies and data access

Topologies
— Flat (indexed)

— Rectangular / hypercube / torus / mesh
— Hierarchical

Access cost function

— Two-level (local vs. remote)
— Multi-level

Data distribution

— Implicit vs. explicit
— Regular vs. irregular (domain uniformity)
Remote data accesses

— Implicit vs. explicit
— Local vs. global

Language Parallel Execution = Topology Data Distribution Distributed Data Remote Access Array Indexing
Retrospective PGAS languages

HPF Implicit User defined mesh Explicit Regular Implicit Global

ZPL Implicit User defined mesh Implicit Regular Explicit Global

GA SPMD Flat ordered set Explicit Regular Explicit Global
Original PGAS languages

CAF SPMD User defined mesh Implicit Regular Explicit Local
Titanium SPMD Flat ordered set Explicit Irregular Expl. + Impl. not applicable
UPC SPMD Flat ordered set Explicit Reg. + Irreg. Implicit Global

HPCS PGAS languages

Chapel APGAS + Impl. User defined mesh Explicit Reg. + Irreg. Expl. + Impl. Global

X10 APGAS Flat ordered set Explicit Reg. + Irreg. Explicit Global
Fortress APGAS + Impl. Hierarchical Explicit Reg. + Irreg. Expl. + Impl. Global

For more details and full paper:

lower = newer

http://dl.acm.org/citation.cfm?id=2716320

Lessons learned??

I Julia

O
 New dynamic language for numeric computing J Iioa

— Combines ideas from Python, Matlab, R, and Fortran

— Mantra: "vectorize when it feels right"

— Core is implemented in C/C++, JIT-compiled to native machine code
— Includes a REPL

— |Julia browser-based graphical notebook interface

e Goal: never make the developer resort to using two languages

— Similar philosophy in Chapel community

function mandelbrot(z)
c =2z
maxiter = 80
for n = 1:maxiter
if abs(z) > 2
return n-1

end
. Z = zN2 + C
nheads = @parallel (+) for i=1:100000000 end
int(randbool()) return maxiter

end end

Simulate coin tosses in parallel Calculate Mandelbrot function

I Python for HPC

 Primary strength: writeability

— Easy-to-learn
— Low overhead and boilerplate

e Secondary strength: libraries & frameworks

- NumPy (supports large, multi-dimensional matrices)
— SciPy (scientific computing library that uses NumPYy)
— SageMath (open source Mathematica/Matlab alternative)
— |IPython (interactive parallel computing)
- Many others!

Challenge: design your
own parallel language!

What would it
look like?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

