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Performance Tools



e Software tool: computer program used by developers
to create, debug, maintain or support other programs



I Traditional Software Tools

Text editors

Version control

e Debuggers

e Profilers

e Test automation frameworks

 Deployment frameworks

* Integrated development environments (IDES)



I Traditional Software Tools

e Debuggers
— Purpose: finding and removing software defects
— Often done via a process monitoring interface

e Profilers
— Purpose: detecting performance characteristics and identifying
bottlenecks
— Often done via instrumentation (added code that tracks the
program'’s execution)

e Both of these are difficult in parallel and distributed systems



I Traditional Debugging

e Mechanisms
- ptrace: system call that allows one process to control another

— Simulation: slower, but safer
e Common features

— Breakpoints and watchpoints

— Single-stepping (by instruction or line of code)
— Variable examination and modification

— In newer debuggers: reverse-stepping

 Free debuggers: gdb, lldb, Eclipse, Valgrind



I Parallel Debugging

e Multithreaded debugging can be difficult

— Must attach to the correct thread
— Must control other threads as well
— Nondeterminism means unpredictability

— GDB does include support for multithreading:
e http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

e Distributed debugging is even harder

— Hundreds or thousands of nodes; millions of processes
— Enormous launch overhead
— Control and visualization issues


http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html
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I Stack Trace Analysis Tool (STAT)

e Lightweight instrumentation for HPC —
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I Profiling

e Goal: gain insights concerning a program's performance
characteristics

e Common metrics

— Wall or CPU time

- Memory use, page faults, and cache misses
— Network traffic and saturation

- Energy use

e Common scopes
— Function
— Basic block
— Instruction
— Source code line



I Measurement

e [nstrumentation: inserting analysis code

— Binary vs. source
— Static vs. dynamic
— Best for event-based monitoring (e.g., function calls)

o Sampling: polling an analysis source

— Hardware counters
e Performance Application Programming Interface (PAPI)
— Randomized vs. periodic

— Averaging vs. min/max
— Best for continuous monitoring (e.g., memory usage)



I Measurement

Context

— Flat vs. call graph
— Partial vs. full context

Profiling vs. tracing (latter builds time-series)

e |Ssues

— Overhead: added run time due to profiling software
— Perturbation: skewing of behavior due to profiling software
— Skid: execution may not stop immediately on sample

Tradeoff: better information vs. lower overhead

— Instrumentation: more instrumentation points
— Sampling: higher frequency or less aggregation



I GNU Profiler (gprof)

e Compile with “-pg” flag
 Run as usual; generates “gmon.out” file
e View results with “gprof” utility

— "gprof <executable>"

e See https://sourceware.org/binutils/docs/gprof/
for more documentation

* Google also has a multi-threaded profiler:
- https://github.com/gperftools/gperftools


https://sourceware.org/binutils/docs/gprof/
https://github.com/gperftools/gperftools

I Callgrind/Cachegrind

* Run with Valgrind
— Callgrind: "valgrind --tool=callgrind <executable>"
— Cachegrind: "valgrind --tool=cachegrind <executable>"
— This will produce a "*.out . xxxx" file with raw results (could be large!)
— Remember to call mpirun first if it's an MPI program
 (And use cg_merge to merge Cachegrind output files)
* Post-process results
— Callgrind: "callgrind_annotate <output-files>"

e GUI alternative: kcachegrind (or gcachegrind on Mac OS X)
— Cachegrind: "cg_annotate <output-file>" (“--auto=yes” for code)

 Dx = data cache (level X) IX = instruction cache (level X)
e 1=L1cache L/LL = lowest level (on the cluster, this is L3)
e I =read w = write m = miss Ir = Instructions read

e See http://valgrind.org/docs/manual for more documentation


http://valgrind.org/docs/manual

Jll Distributed Analysis

e Lots of datal!
— Collect at each rank but only store compressed or
aggregated data

— Aggregate using a tree-based reduction structure to
reduce communication overhead




I HPCToolkit (from Rice University)

e Integrated HPC program analysis tool chain

e Run program with hpcrun

On cluster, "source /shared/bin/hpctoolkit_setup.sh" first
Use “-t” for tracing information
With MPI, call mpirun first

e (e.g.,“salloc -n 4 mpirun hpcrun -t ./my_program”)
This generates a folder w/ measurement data
Make sure it will run for more than a few seconds!
 However, remember that the instrumentation adds significant overhead

See also /shared/bin/hpctoolkit_p2 for an example of how to
run the analysis as a batch job



ll HPCToolkit (from Rice University)

e Post-process results using hpcprof

— Pass it your measurement folder as a parameter
— This generates a new folder w/ a results database

e View results using hpcviewer or hpctraceviewer

— On cluster, make sure you forward X11 when you login

e E.g.,“ssh -X <eid>@<host>"
— You may want to copy and view the results on your local computer
— Viewers are available for Linux, Mac OS X, and Windows

e See http://hpctoolkit.org/documentation.html for more
documentation


http://hpctoolkit.org/documentation.html

I Other HPC analysis tools

e Tuning and Analysis Utilities (TAU) — University of Oregon
 Open|SpeedShop - Krell Institute

e Scalasca

e Paraver

~

KRELL




I Tool frameworks

 Many analysis tools need similar functionality
— Binary parsing
— Instrumentation
— Stack walking

e Tool framework: a library that provides common
functionality upon which custom tools can be written

— Intel Pin
— Dyninst
— libunwind
— Valgrind
- CRAFT



I Modeling and autotuning

* Observation: modern systems have a lot of knobs

— Message size, block size, # of threads, # of processes
— Many of these factors influence each other
— Different runs could require different “optimal” settings

e |dea #1: build a model of these interactions
— Needs training data; could differ for every run
e |dea #2: let the system tune itself at runtime

— Could be expensive or impossible to implement
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