CS 470
Spring 2017

Mike Lam, Professor

Performance Tools

e Software tool: computer program used by developers
to create, debug, maintain or support other programs

I Traditional Software Tools

Text editors

Version control

e Debuggers

e Profilers

e Test automation frameworks

 Deployment frameworks

* Integrated development environments (IDES)

I Traditional Software Tools

e Debuggers
— Purpose: finding and removing software defects
— Often done via a process monitoring interface

e Profilers
— Purpose: detecting performance characteristics and identifying
bottlenecks
— Often done via instrumentation (added code that tracks the
program'’s execution)

e Both of these are difficult in parallel and distributed systems

I Traditional Debugging

e Mechanisms
- ptrace: system call that allows one process to control another

— Simulation: slower, but safer
e Common features

— Breakpoints and watchpoints

— Single-stepping (by instruction or line of code)
— Variable examination and modification

— In newer debuggers: reverse-stepping

 Free debuggers: gdb, lldb, Eclipse, Valgrind

I Parallel Debugging

e Multithreaded debugging can be difficult

— Must attach to the correct thread
— Must control other threads as well
— Nondeterminism means unpredictability

— GDB does include support for multithreading:
e http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

e Distributed debugging is even harder

— Hundreds or thousands of nodes; millions of processes
— Enormous launch overhead
— Control and visualization issues

http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

Message Queues X

* Microsoft Visual Studio = :
* Intel Debugger i
[] ;.:?Llnexpec[ed

Rational Purify
 RogueWave TotalView
Allinea DDT

384 | O show local ranks
| @ Show global ranks

| [only ranks with messages

| Select communicator -
|

MPI_COMM_WORLD
MPI_COMM_SELF

MPI_COMM_NULL

[Show Diagram Key |

[Update |

Text Communicator Queue From (local) | From (global) To(local) | 'Ib(glohz
Stacks = - E 1 |Receive: 0x8... ‘MP| COMMUN... Receive ?149 405 113 369 =
Processes Threads Function - 2 | Receive: 0x8... -MH CDMMI.IN....MCENQ J 5135 i 135 251 251
32 132] = main (wave.c:334) 3 |Receive: 0xB... MPI COMMUN... Receive 0x0 1190 446 170 426
{/home/david/allinea/forge/examples/wave.c:334 4 || Receive: 0x8.., |MP1 m”””"'“;mea"e :D"“ ;112 m 92 92 L
11] J11] Smca pl obl 132 Processes: ranks 0-31 ! [e e e % =5 il i i)

STPIE

111

11] J11[| sched_yield (systa 8.581] 1

20/ 120 | mupdate (wave.c:199)
]
J

1[] 1] “update (wave.c:216)
32[132 morte_progress_thread_engine

pq Visual Studio = RogueWave :
Ser WA allinea

BV E N software DDT

I Stack Trace Analysis Tool (STAT)

e Lightweight instrumentation for HPC —

e Gather all traces and aggregate into a :,:“9&[0-4“51
tree form _start_bls

40195, 0-4095]

e Results can inform a more detailed debug e
run using another tool R

| PMPT Earrier | | do_Sendorstall | | PIPI_Waitall
II|'4|:|~3|4:[1:1,3-44::95] 1:[1] [z

| MF‘IDI_BGLEI_EEFHE! | | __gettimechday | | MPID_Frogress _wait |
TR 10,3 14,16-37 .. [\ 63 15,38,84,140,..] 1:2]

r

| BGLMP_GIE arier |

3012:[0,3-6,8-14,...] 874163 29,127,..]

| BiaLML_Mezza

ger_adwvance |

1:[2]

r
| BGLML_Messaoer_Madvance |

Analysis
Tool

2613:[0,3-6,8-12,..,

190:[2350,62,79,..]

2255:[0,3-6,3-12,.. M3 [87,122 156....]

I Profiling

e Goal: gain insights concerning a program's performance
characteristics

e Common metrics

— Wall or CPU time

- Memory use, page faults, and cache misses
— Network traffic and saturation

- Energy use

e Common scopes
— Function
— Basic block
— Instruction
— Source code line

I Measurement

e [nstrumentation: inserting analysis code

— Binary vs. source
— Static vs. dynamic
— Best for event-based monitoring (e.g., function calls)

o Sampling: polling an analysis source

— Hardware counters
e Performance Application Programming Interface (PAPI)
— Randomized vs. periodic

— Averaging vs. min/max
— Best for continuous monitoring (e.g., memory usage)

I Measurement

Context

— Flat vs. call graph
— Partial vs. full context

Profiling vs. tracing (latter builds time-series)

e |Ssues

— Overhead: added run time due to profiling software
— Perturbation: skewing of behavior due to profiling software
— Skid: execution may not stop immediately on sample

Tradeoff: better information vs. lower overhead

— Instrumentation: more instrumentation points
— Sampling: higher frequency or less aggregation

I GNU Profiler (gprof)

e Compile with “-pg” flag
 Run as usual; generates “gmon.out” file
e View results with “gprof” utility

— "gprof <executable>"

e See https://sourceware.org/binutils/docs/gprof/
for more documentation

* Google also has a multi-threaded profiler:
- https://github.com/gperftools/gperftools

https://sourceware.org/binutils/docs/gprof/
https://github.com/gperftools/gperftools

I Callgrind/Cachegrind

* Run with Valgrind
— Callgrind: "valgrind --tool=callgrind <executable>"
— Cachegrind: "valgrind --tool=cachegrind <executable>"
— This will produce a "*.out . xxxx" file with raw results (could be large!)
— Remember to call mpirun first if it's an MPI program
 (And use cg_merge to merge Cachegrind output files)
* Post-process results
— Callgrind: "callgrind_annotate <output-files>"

e GUI alternative: kcachegrind (or gcachegrind on Mac OS X)
— Cachegrind: "cg_annotate <output-file>" (“--auto=yes” for code)

 Dx = data cache (level X) IX = instruction cache (level X)
e 1=L1cache L/LL = lowest level (on the cluster, this is L3)
e I =read w = write m = miss Ir = Instructions read

e See http://valgrind.org/docs/manual for more documentation

http://valgrind.org/docs/manual

Jll Distributed Analysis

e Lots of datal!
— Collect at each rank but only store compressed or
aggregated data

— Aggregate using a tree-based reduction structure to
reduce communication overhead

I HPCToolkit (from Rice University)

e Integrated HPC program analysis tool chain

e Run program with hpcrun

On cluster, "source /shared/bin/hpctoolkit_setup.sh" first
Use “-t” for tracing information
With MPI, call mpirun first

e (e.g.,“salloc -n 4 mpirun hpcrun -t ./my_program”)
This generates a folder w/ measurement data
Make sure it will run for more than a few seconds!
 However, remember that the instrumentation adds significant overhead

See also /shared/bin/hpctoolkit_p2 for an example of how to
run the analysis as a batch job

ll HPCToolkit (from Rice University)

e Post-process results using hpcprof

— Pass it your measurement folder as a parameter
— This generates a new folder w/ a results database

e View results using hpcviewer or hpctraceviewer

— On cluster, make sure you forward X11 when you login

e E.g.,“ssh -X <eid>@<host>"
— You may want to copy and view the results on your local computer
— Viewers are available for Linux, Mac OS X, and Windows

e See http://hpctoolkit.org/documentation.html for more
documentation

http://hpctoolkit.org/documentation.html

I Other HPC analysis tools

e Tuning and Analysis Utilities (TAU) — University of Oregon
 Open|SpeedShop - Krell Institute

e Scalasca

e Paraver

~

KRELL

I Tool frameworks

 Many analysis tools need similar functionality
— Binary parsing
— Instrumentation
— Stack walking

e Tool framework: a library that provides common
functionality upon which custom tools can be written

— Intel Pin
— Dyninst
— libunwind
— Valgrind
- CRAFT

I Modeling and autotuning

* Observation: modern systems have a lot of knobs

— Message size, block size, # of threads, # of processes
— Many of these factors influence each other
— Different runs could require different “optimal” settings

e |dea #1: build a model of these interactions
— Needs training data; could differ for every run
e |dea #2: let the system tune itself at runtime

— Could be expensive or impossible to implement

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

