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Foster’'s Methodology Examples

Graphics and content taken from IPP section 2.7 and the following:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf


http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

I Foster's methodology

Task: executable unit along with local memory and 1/O ports

Channel: message queue connecting tasks' input and output ports

Drawn as a graph, tasks are vertices and channels are edges

Steps:

1) Partitioning s
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"-| Partitioning

2) Communication g
,~~ Problem j —

e

g

3) Agglomeration
4) Mapping

Channel

O O

Task 1 Task 2

Mapping

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html
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http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Boundary Value Problem

 Problem: Determine the temperature changes in a thin
par of uniform material with constant-temperature
poundary caps over a given time period, given the
ength of the bar and its initial temperature

— General solution: solve partial differential equation
e Usually too expensive!
— Approximate solution: finite difference method

e Discretize space (1d grid) and time (ms)

e Goal: Parallelize this solution, using Foster's
methodology as a guide



I Boundary Value Problem

Partitioning:

Make each T(x,t) computation a primitive task.
= 2-dimensional domain decomposition
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I Boundary Value Problem

ommunication:
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I Boundary Value Problem

Agglomeration:
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Agglomeration:
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Mapping:
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I Finding a maximum

 Problem: Determine the maximum value among
some large set of given values

— Special case of a reduction

e Goal: Parallelize this solution, using Foster's
methodology as a guide



I Finding a maximum

e Partitioning: each value is a primitive task

— (1d domain decomposition)
— One task (root) will compute final solution

« Communication: divide-and-conguer

— Root task needs to compute max after n-1 tasks
— Keep splitting the input space in half




e Binomial tree with n = 2k nodes

— (remember merge sort in P2?)

Recursive
definition: O
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I Finding a maximum

Agglomeration:

Group n leafs of the tree:

S

The same (actually, in the agglomeration phase, use n such that you end
up with p tasks).

Mapping:



I Random number generation

Goal: Generate uniform psuedo-random numbers in a distributed way

Problem: We wish to retain some notion of reproducibility

— In other words: results should be deterministic, given the RNG seed
— This means we can't depend on the ordering of distributed communications

Problem: We wish to avoid duplicated series of generated numbers

— This means we can't just use the same generator in all processes
Naive solution:

— Generate all numbers on one node and scatter them (a la P2)
— Too slow!

Can we do better? (Foster's)

— Generating each random number is a task S LAY 3
«©
— Channels between subsequent numbers from the same seed % g 0000
. )
— Tweak communication & agglomeration ) 0'

— Minimize dependencies
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Figure 10.1: The random tree method. Two generators are used to construct a tree of random
numbers. The right generator is applied to elements of the sequence L generated by the left

generator to generate new sequences R, R, R", etc.
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Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint
subsequence of the sequence constructed by the left generator's sequence.

More info in Chapter 10 of

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


http://www.mcs.anl.gov/~itf/dbpp/text/book.html
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