CS 470
Spring 2017

Mike Lam, Professor

Q
() oW
Z, 011, 07710010101110‘“
0 7010111011010
» %0101111011001
0
%07, 10100101

0
701010101010

Foster’'s Methodology Examples

Graphics and content taken from IPP section 2.7 and the following:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf


http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

I Foster's methodology

Task: executable unit along with local memory and 1/O ports

Channel: message queue connecting tasks' input and output ports

Drawn as a graph, tasks are vertices and channels are edges

Steps:

1) Partitioning s
(O™

"-| Partitioning

2) Communication g
,~~ Problem j —

e

g

3) Agglomeration
4) Mapping

Channel

O O

Task 1 Task 2

Mapping

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

SIS BE

Communication

00 10
L3 &) L)L

O
Qo

Primitive Tasks

Agglomw

SHeEails Red s


http://www.mcs.anl.gov/~itf/dbpp/text/book.html

I Boundary Value Problem

 Problem: Determine the temperature changes in a thin
par of uniform material with constant-temperature
poundary caps over a given time period, given the
ength of the bar and its initial temperature

— General solution: solve partial differential equation
e Usually too expensive!
— Approximate solution: finite difference method

e Discretize space (1d grid) and time (ms)

e Goal: Parallelize this solution, using Foster's
methodology as a guide



I Boundary Value Problem

Partitioning:

Make each T(x,t) computation a primitive task.
= 2-dimensional domain decomposition

ta




I Boundary Value Problem

ommunication:

O 0O 0 0 C

QA C
ettt
ettty
Y Ve %

ettty
VY Y%
e tiaaes
A e e ¥ 0
e aiaas
Y Y%
ettt
ST

O O O 0O C



I Boundary Value Problem

Agglomeration:

(7N

O

g

ONONONON

-
ke

N

~\

.

O

efleflefle]

7




Agglomeration:

0 QOQoaoaguao

Mapping:

CROBC



I Finding a maximum

 Problem: Determine the maximum value among
some large set of given values

— Special case of a reduction

e Goal: Parallelize this solution, using Foster's
methodology as a guide



I Finding a maximum

e Partitioning: each value is a primitive task

— (1d domain decomposition)
— One task (root) will compute final solution

« Communication: divide-and-conguer

— Root task needs to compute max after n-1 tasks
— Keep splitting the input space in half




e Binomial tree with n = 2k nodes

— (remember merge sort in P2?)

Recursive
definition: O

e o 84T BT

B4




I Finding a maximum

Agglomeration:

Group n leafs of the tree:

S

The same (actually, in the agglomeration phase, use n such that you end
up with p tasks).

Mapping:



I Random number generation

Goal: Generate uniform psuedo-random numbers in a distributed way

Problem: We wish to retain some notion of reproducibility

— In other words: results should be deterministic, given the RNG seed
— This means we can't depend on the ordering of distributed communications

Problem: We wish to avoid duplicated series of generated numbers

— This means we can't just use the same generator in all processes
Naive solution:

— Generate all numbers on one node and scatter them (a la P2)
— Too slow!

Can we do better? (Foster's)

— Generating each random number is a task S LAY 3
«©
— Channels between subsequent numbers from the same seed % g 0000
. )
— Tweak communication & agglomeration ) 0'

— Minimize dependencies



L1
Goal: Ry 1
Uniform O
randomness and /o< \o\
reproducibility VNN
/O O\ O\ N
. o . R
. H’

HH

arly mod m

arRy mod m

Figure 10.1: The random tree method. Two generators are used to construct a tree of random
numbers. The right generator is applied to elements of the sequence L generated by the left

generator to generate new sequences R, R, R", etc.

g gt g2

Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint
subsequence of the sequence constructed by the left generator's sequence.

More info in Chapter 10 of

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


http://www.mcs.anl.gov/~itf/dbpp/text/book.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

