CS 470 Spring 2017

Mike Lam, Professor

0010101110110110
$\mathrm{O}_{\mathrm{O}^{\circ}} \mathrm{O}_{\mathrm{O}_{7}} \mathrm{O}_{\mathrm{O}_{10}}^{0_{1700101111011001}}$
$0^{0} 0_{10100101}$
${ }^{10101010101010}$

Foster's Methodology Examples

Foster's methodology

- Task: executable unit along with local memory and I/O ports
- Channel: message queue connecting tasks' input and output ports
- Drawn as a graph, tasks are vertices and channels are edges
- Steps:

1) Partitioning
2) Communication
3) Agglomeration
4) Mapping

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

Boundary Value Problem

- Problem: Determine the temperature changes in a thin bar of uniform material with constant-temperature boundary caps over a given time period, given the length of the bar and its initial temperature
- General solution: solve partial differential equation
- Usually too expensive!
- Approximate solution: finite difference method
- Discretize space (1d grid) and time (ms)
- Goal: Parallelize this solution, using Foster's methodology as a guide

Boundary Value Problem

Partitioning:

Make each $T(x, t)$ computation a primitive task.
\Rightarrow 2-dimensional domain decomposition

Boundary Value Problem

Communication:

Boundary Value Problem

Agglomeration:

Boundary Value Problem

Agglomeration: 000000000000 Mapping:

$$
\Theta \Theta \Theta
$$

Finding a maximum

- Problem: Determine the maximum value among some large set of given values
- Special case of a reduction
- Goal: Parallelize this solution, using Foster's methodology as a guide

Finding a maximum

- Partitioning: each value is a primitive task
- (1d domain decomposition)
- One task (root) will compute final solution
- Communication: divide-and-conquer
- Root task needs to compute max after n-1 tasks
- Keep splitting the input space in half

Finding a maximum

- Binomial tree with $\mathrm{n}=2^{\mathrm{k}}$ nodes
- (remember merge sort in P2?)

Finding a maximum

Agglomeration:
Group n leafs of the tree:

Mapping:
The same (actually, in the agglomeration phase, use n such that you end up with p tasks).

Random number generation

- Goal: Generate uniform psuedo-random numbers in a distributed way
- Problem: We wish to retain some notion of reproducibility
- In other words: results should be deterministic, given the RNG seed
- This means we can't depend on the ordering of distributed communications
- Problem: We wish to avoid duplicated series of generated numbers
- This means we can't just use the same generator in all processes
- Naive solution:
- Generate all numbers on one node and scatter them (a la P2)
- Too slow!
- Can we do better? (Foster's)
- Generating each random number is a task
- Channels between subsequent numbers from the same seed
- Tweak communication \& agglomeration

- Minimize dependencies

Random number generation

Goal:
 Uniform
 randomness and reproducibility

$$
\begin{aligned}
& L_{k+1}=a_{L} L_{k} \bmod m \\
& R_{k+1}=a_{R} R_{k} \bmod m
\end{aligned}
$$

Figure 10.1: The random tree method. Two generators are used to construct a tree of random numbers. The right generator is applied to elements of the sequence L generated by the left generator to generate new sequences $R, R^{\prime}, R^{\prime \prime}$, etc.

Figure 10.2: The leapfrog method with $n=3$. Each of the three right generators selects a disjoint subsequence of the sequence constructed by the left generator's sequence.

