
  

CS 470
Spring 2017

Mike Lam, Professor

Parallel Algorithm Development
(Foster's Methodology)

Graphics and content taken from IPP section 2.7 and the following:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf


  

Parallel program development

● Writing efficient parallel code is hard

● We've covered two generic paradigms ...

– Shared-memory

– Distributed message-passing

● … and three specific technologies

– Pthreads

– OpenMP

– MPI

● Given a problem, how do we approach the development of
a parallel program that solves it?



  

Method vs. methodology

● Method: a systematic process or way of doing a task

● Methodology: analysis of methods relevant to a discipline

– Literally: "the study of methods"

– Goal: guidelines or best practices for a class of methods

● Parallel algorithms

– There is no single method for creating efficient parallel algorithms

– However, there are some good methodologies that can guide us

– We will study one: Foster's methodology



  

Foster's methodology

● Task: executable unit along with local memory and I/O ports

● Channel: message queue connecting tasks' input and output ports

● Drawn as a graph, tasks are vertices and channels are edges

● Steps:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Task 1 Task 2

Channel

Foster's textbook is online:
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

http://www.mcs.anl.gov/~itf/dbpp/text/book.html


  

Partitioning

● Goal: discover as much parallelism as possible

● Divide computation into as many primitive tasks as
possible

– Avoid redundant computation

– Primitive tasks should be roughly the same size

– Number of tasks should increase as the problem size increases
● This helps ensure good scaling behavior



  

Partitioning

● Domain ("data") decomposition

– Break tasks into segments of various granularities by data



  

Partitioning

● Functional ("task") decomposition

– Separation by task type

– Domain decomposition can often be used inside of
individual tasks

Pipelined Non-pipelined



  

Communication

● Goal: minimize overhead

● Identify which tasks must communicate and how

– Local (few tasks) vs. global (many tasks)

– Structured (regular) vs. unstructured (irregular)

– Prefer local, structured communication

– Tasks should perform similar amounts of communication
● This helps with load balancing

– Communication should be concurrent wherever possible



  

Communication

● Examples of local communication:

Structured Unstructured



  

Communication

● Examples of global communication:

Structured Unstructured



  

Agglomeration

● Goal: Reduce messages and simplify programming

● Combine tasks into groups, increasing locality

– Groups should have similar computation and
communication costs

– Task counts should still scale with processor count and /or
problem size

– Minimize software engineering costs
● Agglomeration can prevent code reuse



  

Agglomeration

● Examples:

Agglomeration of four local tasks Agglomeration of tree-based tasks



  

Mapping

● Goal: minimize execution time

– Alternately: maximize processor utilization

– On a distributed system: minimize communication

● Assign tasks (or task groups) to processors/nodes

– Block vs. cyclic

– Static vs. dynamic

● Strategies:

– 1) Place concurrent tasks on different nodes

– 2) Place frequently-communicating tasks on the same node

● Problem: these strategies are often in conflict!

– The general problem of optimal mapping is NP-complete



  

Mapping

● Examples:

Cyclic mapping Dynamic mapping

Block mapping



  

Common paradigms

● Grid/mesh-based nearest-neighbor simulation

– Often includes math-heavy computations
● Linear algebra and systems of equations
● Dense vs. sparse matrices

– Newer: adaptive mesh and multigrid simulations

● Worker pools / task queues

– Newer: adaptive cloud computing

● Pipelined task phases

– Newer: MapReduce

● Divide-and-conquer tree-based computation

– Often combined with other paradigms (worker pools and pipelines)



  

MapReduce

● Parallel/distributed system paradigm for "big data" processing

– Uses a specialized file system

– Originally developed at Google (along with GFS)

– Currently popular: Apache Hadoop and HDFS
● General languages: Java, Python, Ruby, etc.
● Specialized languages: Pig (data flow language) or Hive (SQL-like)
● Growing quickly: Apache Spark (more generic w/ in-memory processing)

● Phases

– Map (process local data)

– Shuffle (distributed sort)

– Reduce (combine results)



  

Apache Spark



  

MapReduce

● Word count example



  

Apache Hadoop (Java)

public class WordCount {

     public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {

       private final static IntWritable one = new IntWritable(1);

       private Text word = new Text();

     public void map(LongWritable key, Text value, OutputCollector<Text,

                       IntWritable> output, Reporter reporter) throws IOException {

       String line = value.toString();

       StringTokenizer tokenizer = new StringTokenizer(line);

       while (tokenizer.hasMoreTokens()) {

         word.set(tokenizer.nextToken());

         output.collect(word, one);

       }

     }

   }

   public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

     public void reduce(Text key, Iterator<IntWritable> values,

                          OutputCollector<Text, IntWritable> output, Reporter orter) throws IOException {

       int sum = 0;

       while (values.hasNext()) {

         sum += values.next().get();

       }

       output.collect(key, new IntWritable(sum));

     }

   }

}



  

Apache Spark (Python)

WORD COUNT

text_file = sc.textFile("hdfs://docs/input.txt")

counts = text_file.flatMap(lambda line: line.split(" ")) \

                  .map(lambda word: (word, 1)) \

                  .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://results/counts.txt")

MONTE CARLO PI

def sample(p):

    x, y = random(), random()

    return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

          .map(sample) \

          .reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

