CS 470 Spring 2017

Mike Lam, Professor

Parallel Algorithm Development (Foster's Methodology)

Graphics and content taken from IPP section 2.7 and the following:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/csci493.65/lecture_notes/chapter03.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779577334688/cpd-11.pdf

Parallel program development

- Writing efficient parallel code is hard
- We've covered two generic paradigms ...
 - Shared-memory
 - Distributed message-passing
- ... and three specific technologies
 - Pthreads
 - OpenMP
 - MPI
- Given a problem, how do we approach the development of a parallel program that solves it?

Method vs. methodology

- Method: a systematic process or way of doing a task
- Methodology: analysis of methods relevant to a discipline
 - Literally: "the study of methods"
 - Goal: guidelines or best practices for a class of methods
- Parallel algorithms
 - There is no single **method** for creating efficient parallel algorithms
 - However, there are some good **methodologies** that can guide us
 - We will study one: Foster's methodology

Foster's methodology

- Task: executable unit along with local memory and I/O ports
- Channel: message queue connecting tasks' input and output ports
- Drawn as a graph, tasks are vertices and channels are edges
- Steps:
 - 1) Partitioning
 - 2) Communication
 - 3) Agglomeration

Channel

4) Mapping

Task 1

Foster's textbook is online: http://www.mcs.anl.gov/~itf/dbpp/text/book.html

Task 2

Partitioning

- Goal: discover as much parallelism as possible
- Divide computation into as many primitive tasks as possible
 - Avoid redundant computation
 - Primitive tasks should be roughly the same size
 - Number of tasks should increase as the problem size increases
 - This helps ensure good scaling behavior

Partitioning

- Domain ("data") decomposition
 - Break tasks into segments of various granularities by data

Partitioning

- Functional ("task") decomposition
 - Separation by task type
 - Domain decomposition can often be used inside of individual tasks

Communication

- Goal: minimize overhead
- Identify which tasks must communicate and how
 - Local (few tasks) vs. global (many tasks)
 - Structured (regular) vs. unstructured (irregular)
 - Prefer local, structured communication
 - Tasks should perform similar amounts of communication
 - This helps with load balancing
 - Communication should be concurrent wherever possible

Communication

• Examples of local communication:

OQQQQQQQQ

Structured

Unstructured

Communication

• Examples of global communication:

Structured

Unstructured

Agglomeration

- Goal: Reduce messages and simplify programming
- Combine tasks into groups, increasing locality
 - Groups should have similar computation and communication costs
 - Task counts should still scale with processor count and /or problem size
 - Minimize software engineering costs
 - Agglomeration can prevent code reuse

Agglomeration

• Examples:

Agglomeration of four local tasks

Agglomeration of tree-based tasks

Mapping

- Goal: minimize execution time
 - Alternately: maximize processor utilization
 - On a distributed system: minimize communication
- Assign tasks (or task groups) to processors/nodes
 - Block vs. cyclic
 - Static vs. dynamic
- Strategies:
 - 1) Place concurrent tasks on different nodes
 - 2) Place frequently-communicating tasks on the same node
- Problem: these strategies are **often** in conflict!
 - The general problem of optimal mapping is NP-complete

Mapping

• Examples:

Block mapping

Cyclic mapping

Dynamic mapping

Common paradigms

- Grid/mesh-based nearest-neighbor simulation
 - Often includes math-heavy computations
 - Linear algebra and systems of equations
 - Dense vs. sparse matrices
 - Newer: adaptive mesh and multigrid simulations
- Worker pools / task queues
 - Newer: adaptive cloud computing
- Pipelined task phases
 - Newer: MapReduce
- Divide-and-conquer tree-based computation
 - Often combined with other paradigms (worker pools and pipelines)

MapReduce

- Parallel/distributed system paradigm for "big data" processing
 - Uses a specialized file system
 - Originally developed at Google (along with GFS)
 - Currently popular: Apache Hadoop and HDFS
 - General languages: Java, Python, Ruby, etc.
 - Specialized languages: Pig (data flow language) or Hive (SQL-like)
 - Growing quickly: Apache Spark (more generic w/ in-memory processing)
- Phases
 - Map (process local data)
 - Shuffle (distributed sort)
 - Reduce (combine results)

Apache Spark

MapReduce

• Word count example

Apache Hadoop (Java)

public class WordCount {

}

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values,

```
OutputCollector<Text, IntWritable> output, Reporter orter) throws IOException {
    int sum = 0;
    while (values.hasNext()) {
        sum += values.next().get();
    }
    output.collect(key, new IntWritable(sum));
    }
}
```

Apache Spark (Python)

WORD COUNT

MONTE CARLO PI

```
def sample(p):
    x, y = random(), random()
    return 1 if x*x + y*y < 1 else 0
count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
    .map(sample) \
    .reduce(lambda a, b: a + b)
print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)
```