CS 470 Spring 2016

Mike Lam, Professor

Other Architectures

(with an aside on linear algebra)

Parallel Systems

- Shared memory (uniform global address space)
- Primary story: make faster computers
- Programming paradigm: threads
- Technologies: Pthreads, OpenMP
- Distributed (Non-Uniform Memory Access - NUMA)
- Primary story: add more computers
- Programming paradigm: message passing
- Technologies: MPI (OpenMPI/MPICH), SLURM

Where do we go from here?

A brief digression into gaming

- 1970s: arcades began using specialized graphics chips
- 1980s: increasingly sophisticated capabilities (e.g., sprites, blitters, scrolling)
- Early-mid 1990s: first 3D consoles (e.g., N64) and 3D accelerator cards for PCs
- Late 1990s: classic wars begin: Nvidia vs. ATI and DirectX vs. OpenGL
- Early 2000s: creation of "shaders" (easier non-graphical use of accelerators)
- Late 2000s: rise of General-Purpose GPU (GPGPU) frameworks
- 2007: Compute Unified Device Architecture (CUDA) released (newer library: Thrust)
- 2009: OpenCL standard released
- 2011: OpenACC standard released

peng

GPU Programming

- "Kernels" run on a batch of threads
- Distributed onto many low-powered GPU cores
- Grouped into blocks of cores and grids of blocks
- Limited instruction set that operates on vector data
- Must copy data to/from main memory

GPU Programming (CUDA)

```
void saxpy_serial(int n, float a, float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
// Invoke serial SAXPY kernel
```

Low-level control of parallelism on GPU

```
saxpy_serial(n, 2.0, x, y);
__global__ void saxpy_parallel(int n, float a, float *x, float *y)
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
```

@ IVIDIA. CUDA.

GPU Programming (CUDA)

```
```

// Kernel that executes on the CUDA device

```
```

// Kernel that executes on the CUDA device
_global__ void square_array(float *a, int N)
_global__ void square_array(float *a, int N)
{
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];
if (idx<N) a[idx] = a[idx] * a[idx];
}
}
// main routine that executes on the host
// main routine that executes on the host
int main(void)
int main(void)
{
{
float *a_h, *a_d; // Pointer to host \& device arrays
float *a_h, *a_d; // Pointer to host \& device arrays
const int N = 10; // Number of elements in arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) \&a_d, size); // Allocate array on device
cudaMalloc((void **) \&a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
// Do calculation on device:
int block_size = 4;
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results and cleanup
// Print results and cleanup
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
free(a_h); cudaFree(a_d);
free(a_h); cudaFree(a_d);
}

```
```

}

```
```


Must micromanage memory usage and data movement

GPU Programming (OpenACC)

```
#pragma acc data copy(A) create(Anew)
while (error > tol && iter < iter_max) {
    error = 0.0;
    #pragma acc kernels
    {
        #pragma acc loop
        for (int j = 1; j < n-1; j++) {
            for (int i = 1; i < m-1; i++) {
                        Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                                    A[j-1][i] + A[j+1][i];
                        error = fmax(error, fabs(Anew[j][i] - A[j][i]));
            }
        }
        #pragma acc loop
        for (int j = 1; j < n-1; j++) {
            for (int = i; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
            }
        }
    }
    if (iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
    iter++;
}
```

Fewer modifications required; may not parallelize effectively

Hybrid HPC architectures

- Highly parallel on the node
- Hardware: CPU w/ accelerators
- GPUs or manycore processors (e.g., Intel Phi and SunWay)
- Technologies: OpenMP, CUDA, OpenACC, OpenCL
- Distributed between nodes
- Hardware: interconnect and distributed FS
- Technologies: Infiniband, Lustre, HDFS

Top10 systems (Spring 2016)

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S]	RPEAK [TFLOP/S]	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xen E5 260212C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUUT	$3,120,000$	$33,862.7$	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Optera 27416 C 2.200 GHz , Cray Gemini intercon ect, NVIDIA K20x Cray Inc.	560,640	17.590 .0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	```Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM```	1,572,864	17,173.2	20,132.7	7.890
4	RIKEN Advanced Institute for Computational Science [AICS] Japan	K computer, SPARC64 VIIIfx 2.0 GHz , Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3 GHz , Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
7	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC3م_ E5-2670 8C 2.600 GHz , Aries interconect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
8	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5 GHz , Aries interconnect Cray Inc.	185,088	5,640.2	$7,403.5$	
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3 GHz , Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834
10	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220 Xoan E5-2680 8C 2.700 GHz , Infiniband RR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510

Top10 systems (Spring 2017)

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak [TFlop/s]	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway Taihulight - Sunway MPP, Sunway SW26010 260C 1.45 GHz . nway	10,649,600	93.014 .6	125.435.9	15.371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster. Express- Intel Xeon Phi 31S1P NUDT	$3.120,000$	33.862 .7	54.902 .4	17.808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7. Opteron 6274 16C 2200 GHz , Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17.590 .0	27,112.5	8.209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz , Custom IBM	1,572,864	17.173 .2	20.132 .7	7.890
5	DOE/SC/LBNL/NERSC United States	Cori - Cray XC Intel Xeon Phi 7250 1.4 GHz , Aries interconnect Cray Inc.	622,336	14.014 .7	27,880.7	3.939
6	Joint Center for Advanced High Performance Computing Japan	Oakforect_PACS - PRIMERGY CX1640 M1. Intel Xeon Phi 7250 C 1.4 GHz , Intel OmniFujitsu	556.104	13.554 .6	24.913 .5	2.719
7	RIKEN Advanced Institute for Computational Science (AICS] Japan	K computer, SPARC64 VIIIfx 2.0 GHz , Tofu interconnect Fujitsu	705,024	$10,510.0$	11.280 .4	12,660
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5,20012C 2.6 GHz , Aries interconnec NVIDIA Tesla P100 Cray Inc.	206,720	9.779 .0	15.988 .0	1.312
9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16 C 1.60 GHz , Custom IBM	786.432	8.586 .6	10,066.3	3.945
10	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3 GHz , Aries interconnect Cray Inc.	301,056	8.100 .9	11.078 .9	4.233

Top10 systems

Spring 2016

RANK	SITE	SYSTEM	CORES	RMAX [TFLOP/S]	RPEAK [TFLOP/S]	POWER [KW]	Rank	Site	System	Cores	$R_{\text {max }}$ (TFlop/s)	Rpeak [TFlop/s]	Power (kW)
							1	National Supercomputing	Sunway TaihuLight - Sunway MPP. Sunway SW26010 260C 1.45 GHz , Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
1	National Super Computer Center in Guangzhou	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12 C 2.200 GHz , TH Express-2, Intel	3,120,000	33,862.7	54,902.4	17.808		Center in Wuxi China					
	China	Xeon Phi 31SIP NUDT					2	National Super Computer Center in Guangzhou	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster. Intel Xeon E5-2692 12C 2.200 GHz . TH Express-2, Intel Xeon Phi 31S1P NUDT	3.120 .000	33.862 .7	54,902.4	17.808
2	DOE/SC/Oak Ridge National Laboratory	Titan - Cray XK7 . Opteron 6274 16C 2.2006Hz, Cray Gemini interconnect, NVIDIA K20x	560,640	17,590.0	27,112.5	8.209		China					
	United States	Cray inc.					3	DOE/SC/Oak Ridge	Titan - Cray XK7. Opteron 6274 16C 2.200 GHz , Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560.640	17,590.0	27.112 .5	8.209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/O, Power BOC 16C 1.60 GHz , Custom IBM	1,572,864	17,173.2	20.132 .7	7.890		National Laboratory United States					
4	RIKEN Advanced Institute for Computational Science (AICS)	K computer, SPARC64 VIllifx 2.0 GHz , Tofu interconnect	705,024	10,510.0	11,280.4	12,660	4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BOC 16C 1.60 GHz . Custom IBM	1,572,864	17,173.2	20.132 .7	7.890
	Japan	Fujitsu					5	DOE/SC/LBNL/NERSC United States	Cori-Cray XC40, Intel Xeon Phi 725068 C 1.46 Hz , Aries interconnect Cray Ine.	622.336	14.014 .7	27.880 .7	3.939
5	DOE/SC/Argonne National Laboratory	Mira - BlueGene/Q, Power BQC 16 C 1.60 GHz , Custom	786,432	8,586.6	10,066.3	3.945							
	United States	IBM					6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1. Intel Xeon Phi 725068 C 1.4 GHz , Intel OmniPath Fujitsu	556.104	13.554.6	24.913 .5	2.719
6	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698/3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9								
7	Swiss National Supercomputing Centre ICSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.6006Hz, Aries interconnect, NVDIA K20x Cray Inc.	115,984	6,271.0	7.788 .9	2,325	7	RIKEN Advanced Institute for Computational Science [AICS] Japan	K computer, SPARC64 VIIIfx 2.0 GHz , Tofu interconnect Fujitsu	705,024	10,510.0	11.280 .4	12,660
8	HLRS - Hochstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680N 12 C 2.5 GHz , Aries interconnect Cray Inc.	185,088	5.640 .2	7,403.5		8	Swiss National Supercomputing Centre (CSCS] Switzerland	Piz Daint - Cray XC5O, Xeon E5-2690v3 12C 2.6 GHz , Aries interconnect, NVIDIA Tesla P100 Cray Inc.	206.720	9.779 .0	15.988.0	1.312
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 23GHz, Aries interconnect Cray inc.	196,608	5,537.0	7,235.2	2.834	9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16 C 1.60 GHz , Custom IBM	786,432	8,586.6	10,066.3	3,945
10	Texas Advanced Computing Center/Univ, of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8 C 2.700 GHz , Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510	10	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3 GHz , Aries interconnect Cray Inc.	301.056	8.100 .9	11.078 .9	4.233

Cloud Computing

- Homogenous centralized nodes
- Infrastructure as a Service (IaaS) and Software as as Service (SaaS)
- Hardware: large datacenters with thousands of servers and a highspeed internet connection
- Software: virtualized OS and custom software (Docker, etc.)

Grid Computing

- Heterogenous nodes in disparate physical locations
- Solving problems or performing tasks of interest to a large number of diverse groups
- Hardware: different CPUs, GPUs, memory layouts, etc.
- Software: different OSes, Folding@Home, Condor, GIMPs, etc.

Aside: linear algebra

- Many scientific phenomena can be modeled as matrix operations
- Differential equations, mesh simulations, view transforms, etc.
- Very efficient on vector processors (including GPUs)
- Data decomposition and SIMD parallelism
- Dense matrices vs. sparse matrices
- Popular packages: BLAS, LINPACK, LAPACK

$$
\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\ln \left(l_{1}\right) \\
\ln \left(l_{2}\right) \\
\ln \left(l_{3}\right) \\
\ln \left(l_{4}\right) \\
\ln \left(l_{5}\right) \\
\ln \left(l_{6}\right) \\
\ln \left(l_{7}\right)
\end{array}\right]=\left[\begin{array}{l}
\ln \left(r_{1,3,4}\right) \\
\ln \left(r_{1,3,5}\right) \\
\ln \left(r_{2,6}\right) \\
\ln \left(r_{2,7}\right)
\end{array}\right]
$$

Dense vs. sparse matrices

- A sparse matrix is one in which most elements are zero
- Could lead to more load imbalances
- Can be stored more efficiently, allowing for larger matrices
- Dense matrix operations no longer work
- It is a challenge to make sparse operations as efficient as dense operations

HPL benchmark

- HPL: LINPACK-based dense linear algebra benchmark
- Generates a linear system of equations (answers are all 1.0's)
- Distributes data in block-cyclic pattern
- LU factorization (similar to Gaussian elimination)
- Backward substitution to solve system
- Error calculation to verify correctness
- Compiled on cluster
- Located in /shared/apps/hpl-2.1/bin/Linux_PII_CBLAS

P3 (OpenMP)

- Similar to HPL benchmark

1) Random generation of linear system (x is all 1's)
2) Gaussian elimination
3) Backwards substitution (row- or column-oriented)

Non-random example
$3 x+2 y-z=1$
$2 x-2 y+4 z=-2$
$-x+\frac{1}{2} y-z=0$
Original system (Ax = b)

3.0	2.0	-1.0	1.0
0.0	-3.3	4.7	-2.7
0.0	0.0	0.3	-0.6

Upper triangular system

	3.0	2.0	-1.0	1.0
	2.0	-2.0	4.0	-2.0
Gaussian	-1.0	0.5	-1.0	0.0
elimination	Augmented matrix $[\mathrm{A} \mid \mathrm{b}]$			

1.0	0.0	0.0	1.0
0.0	1.0	0.0	-2.0
0.0	0.0	1.0	-2.0
	Solved system		

