
  

CS 470
Spring 2017

Mike Lam, Professor

Advanced OpenMP



  

Atomics

● OpenMP provides access to highly-efficient hardware
synchronization mechanisms

– Use the atomic pragma to annotate a single statement

– Statement must be a single increment/decrement or in the
following form:

● x <op>= <expr>;    // <op> can be +, -, *, /, &, |, ^, <<, >>

– Many processors provide a load/modify/store instruction
● In x86-64, specified using the LOCK prefix
● Far more efficient than using a mutex (i.e., critical)

– This requires multiple function calls!



  

Locks

● OpenMP provides a basic locking system

– Useful for protecting a data structure rather than a region of code

– omp_lock_t: lock variable
● Similar to pthread_mutex_t

– omp_lock_init: initialize lock
● Similar to pthread_mutex_init

– omp_set_lock: acquire lock
● Similar to pthread_mutex_lock

– omp_unset_lock: release lock
● Similar to pthread_mutex_unlock

– omp_lock_destroy: clean up a lock
● Similar to pthread_mutex_destroy



  

Thread safety

● Don't mix mutual exclusion mechanisms
– #pragma omp critical

– #pragma omp atomic

– omp_set_lock()

● Don't nest mutual exclusion mechanisms

– Nesting unnamed critical sections guarantees deadlock!
● The thread cannot enter the second section because it is still in

the first section, and unnamed sections “share” a name

– If you must, use named critical sections or nested locks



  

Nested locks

● Simple vs. nested locks

– omp_nest_lock_* instead of omp_lock_*

– A nested lock may be acquired multiple times
● Must be in the same thread
● Must be released the same number of times
● Allows you to write functions that call each other but need to

acquire the same lock



  

Tasks

● OpenMP is most often used for data parallelism (parallel for)

● Newer versions (3.1+) have explicit task parallelism
– #pragma omp parallel

● Spawn worker threads

– #pragma omp task
● Create a new task (should be in a parallel block)
● Task is assigned to an available worker by the runtime (may be deferred)

– #pragma omp taskwait
● Waits for all created tasks to finish (but doesn’t destroy workers)

main:
#   pragma omp parallel
#   pragma omp single nowait

quick_sort(items, n);

quicksort:
    <select pivot and partition>

    // recursively sort each partition
#   pragma omp task
    quick_sort(items, p+1);
#   pragma omp task
    quick_sort(items+q, n-q);
#   pragma omp taskwait



  

Aside

● Often useful: multiple for-loops inside a parallel region

– Many pragmas bind dynamically to any active parallel region

– Less thread creation/joining overhead

– Private variables can be re-used across multiple loops

#   pragma omp parallel default(none) shared(n,m)
    {
        int tid = omp_get_thread_num();

#       pragma omp for
        for (int i = 0; i < n; i++) {
            // do something that requires tid
        }

#       pragma omp for
        for (int j = 0; j < m; j++) {
            // do something else that requires tid
        }
    }



  

Loop scheduling

● Use the schedule clause to control how parallel for-
loop iterations are allocated to threads

– Modified by chunksize parameter

– static: split into chunks before loop is executed

– dynamic: split into chunks, dynamically allocated to threads
(similar to thread pool or tasks)

– guided: like dynamic, but chunk sizes decrease
● The specified chunksize is the minimum

– auto: allows the compiler or runtime to choose

– runtime: allows specification using OMP_SCHEDULE



  

Loop scheduling
(static)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 0
Iteration 03 on thread 0
Iteration 04 on thread 0
Iteration 05 on thread 0
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 1
Iteration 09 on thread 1
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 1
Iteration 13 on thread 1
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 2
Iteration 19 on thread 2
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 2
Iteration 23 on thread 2
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 3
Iteration 27 on thread 3
Iteration 28 on thread 3
Iteration 29 on thread 3
Iteration 30 on thread 3
Iteration 31 on thread 3

(static, 1)

Iteration 00 on thread 0
Iteration 01 on thread 1
Iteration 02 on thread 2
Iteration 03 on thread 3
Iteration 04 on thread 0
Iteration 05 on thread 1
Iteration 06 on thread 2
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 1
Iteration 10 on thread 2
Iteration 11 on thread 3
Iteration 12 on thread 0
Iteration 13 on thread 1
Iteration 14 on thread 2
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 1
Iteration 18 on thread 2
Iteration 19 on thread 3
Iteration 20 on thread 0
Iteration 21 on thread 1
Iteration 22 on thread 2
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 1
Iteration 26 on thread 2
Iteration 27 on thread 3
Iteration 28 on thread 0
Iteration 29 on thread 1
Iteration 30 on thread 2
Iteration 31 on thread 3

(static, 2)

Iteration 00 on thread 0
Iteration 01 on thread 0
Iteration 02 on thread 1
Iteration 03 on thread 1
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 3
Iteration 07 on thread 3
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 1
Iteration 11 on thread 1
Iteration 12 on thread 2
Iteration 13 on thread 2
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 0
Iteration 17 on thread 0
Iteration 18 on thread 1
Iteration 19 on thread 1
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 3
Iteration 23 on thread 3
Iteration 24 on thread 0
Iteration 25 on thread 0
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 2
Iteration 29 on thread 2
Iteration 30 on thread 3
Iteration 31 on thread 3

(dynamic, 2)

Iteration 00 on thread 1
Iteration 01 on thread 1
Iteration 02 on thread 3
Iteration 03 on thread 3
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 0
Iteration 07 on thread 0
Iteration 08 on thread 3
Iteration 09 on thread 3
Iteration 10 on thread 3
Iteration 11 on thread 3
Iteration 12 on thread 3
Iteration 13 on thread 3
Iteration 14 on thread 3
Iteration 15 on thread 3
Iteration 16 on thread 2
Iteration 17 on thread 2
Iteration 18 on thread 3
Iteration 19 on thread 3
Iteration 20 on thread 2
Iteration 21 on thread 2
Iteration 22 on thread 1
Iteration 23 on thread 1
Iteration 24 on thread 3
Iteration 25 on thread 3
Iteration 26 on thread 1
Iteration 27 on thread 1
Iteration 28 on thread 1
Iteration 29 on thread 1
Iteration 30 on thread 0
Iteration 31 on thread 0

(guided)

Iteration 00 on thread 2
Iteration 01 on thread 2
Iteration 02 on thread 2
Iteration 03 on thread 2
Iteration 04 on thread 2
Iteration 05 on thread 2
Iteration 06 on thread 2
Iteration 07 on thread 2
Iteration 08 on thread 0
Iteration 09 on thread 0
Iteration 10 on thread 0
Iteration 11 on thread 0
Iteration 12 on thread 0
Iteration 13 on thread 0
Iteration 14 on thread 1
Iteration 15 on thread 1
Iteration 16 on thread 1
Iteration 17 on thread 1
Iteration 18 on thread 1
Iteration 19 on thread 3
Iteration 20 on thread 3
Iteration 21 on thread 3
Iteration 22 on thread 3
Iteration 23 on thread 2
Iteration 24 on thread 2
Iteration 25 on thread 2
Iteration 26 on thread 2
Iteration 27 on thread 2
Iteration 28 on thread 2
Iteration 29 on thread 1
Iteration 30 on thread 1
Iteration 31 on thread 3


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

