

CS 470
Spring 2017

Mike Lam, Professor

Parallel Computing
(a.k.a. "CS 470 in a nutshell")

von Neumann architecture

CPU

ALU
Registers

Main Memory

PC

1. Fetch

2. Decode

3. Execute

von Neumann architecture

CPU

ALU
Registers

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Bottleneck #1: CPU/memory separation

Bottleneck #2: serial CPU

von Neumann architecture

CPU

ALU
Registers

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Cache

Locality

● Temporal locality: frequently-accessed items will continue to
be accessed in the future

– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to be
accessed soon

– Theme: sequential access is common

● Why do we care?

– Programs with good locality can perform better

Caching

● A cache is a small, fast memory that acts as a buffer
or staging area for a larger, slower memory

– Takes advantage of good locality

– Data is transferred to/from the cache in blocks
● For CPUs, also called cache lines

– Cache hit vs. cache miss
● Did the cache have to load from slower memory?

– Cache misses require blocks to be replaced or evicted
● Random replacement
● Least recently used
● Least frequently used

Memory hierarchy

Cache performance impact

● Metrics

– Miss rate: # misses / # memory accesses

– Hit rate: 1 – miss rate

– Hit time: delay in accessing data for a cache hit

– Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program
reads data from a memory system

● General observations:

– Larger cache = higher hit rate but higher hit time

– Lower miss rates = higher read throughput

Cache misses

● A cache always begins cold (empty)

– Every request will be a miss initially

● As the cache loads data, it is warmed up

– This effect can cause performance measurement
variation during experiments if not controlled for

● A working set is a collection of elements needed
repeatedly for a particular computation

– If the working set doesn't fit in cache, this is called a
capacity miss

Temporal locality

● Working set size vs. throughput

Temporal locality

● Working set size vs. throughput

Possible
source of
superlinear
speedup!

Spatial locality

● Stride vs. throughput

Memory mountain

● Stride and WSS vs. read throughput

Memory mountain

● Stride and WSS vs. read throughput

(our cluster)

Core i7 Haswell
2.4 GHz
32K L1 d-cache
256K L2 cache
20MB L3 cache
64 B block

Memory mountain

● Theirs (CS261 textbook) vs ours (CS470 cluster)

Test your own machine! http://csapp.cs.cmu.edu/3e/mountain.tar

Virtual memory

● Kernel translates between virtual and physical addresses

● Goals:

– Use main memory as a cache for disks

– Provide every process with a uniform view of memory

– Protect processes from interference

No virtual memory With virtual memory

von Neumann architecture

CPU

ALU
Registers

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Bottleneck #1: CPU/memory separation

Bottleneck #2: serial CPU

Instruction-level parallelism

● Original CPU design was serial

– One instruction executes at a time

– Only way to improve is to run faster!

– Limited by speed of light

● One approach: make it smaller

– Shorter circuit = faster circuit

– Limited by manufacturing technology

Instruction-level parallelism

● Pipelined CPU design (multiple issue)

– Multiple instructions execute simultaneously

– Instruction-level parallelism at the core level (below threading)

– Split CPU logic into stages and connect stages with clocked registers

– Execution will stall if the next instruction cannot be executed yet

Instruction-level parallelism

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Causes stalls and obstructs pipelining

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

Instruction-level parallelism

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Causes stalls and obstructs pipelining

Instruction-level parallelism

● Out-of-order execution

– Increase saturation of instruction pipeline

– Can alleviate data dependency stalls

– Not always possible

Out-of-order schedule: (8 cycles)

 mrmovq 8(%rbp), %rax
 mrmovq 16(%rbp), %rcx
 mrmovq 24(%rbp), %rdx
 irmovq 0, %rsi
 addq %rax, %rsi
 addq %rcx, %rsi
 addq %rdx, %rsi

Original instructions: (14 cycles)

 irmovq 0, %rsi
 mrmovq 8(%rbp), %rax
 addq %rax, %rsi
 mrmovq 16(%rbp), %rcx
 addq %rcx, %rsi
 mrmovq 24(%rbp), %rdx
 addq %rdx, %rsi

Assumption:
memory accesses
require 3 cycles, all
other instructions
require 1 cycle

Instruction-level parallelism

● Speculative execution

– Predict which branch will be taken
● Roll back changes if we guessed wrong

– Can alleviate control dependency stalls

– High cost of incorrect prediction

– Eager variant: execute both branches
● Discard the wrong one once we figure it out

Beyond von Neumann

● These improvements can only get us so far

– Need to move beyond single-CPU systems

– Parallel computing: multiple simultaneous CPUs or
threads/processes

– Many different possible architectures

System architectures

● Flynn's Taxonomy

– Single Instruction, Single Data (SISD)
● Traditional von Neumann
● Increasingly insufficient!

– Single Instruction, Multiple Data (SIMD)
● Vector instructions (SSE/AVX)
● GPUs and other accelerators

– Multiple Instruction, Multiple Data (MIMD)
● Single Program, Multiple Data (SPMD)
● Shared memory
● Distributed memory

Trend: higher number of slower,
more energy-efficient processors

MIMD system architectures

● Shared memory

– Idea: add more CPUs

– Paradigm: threads

– Technologies: Pthreads, OpenMP

– Issue: synchronization

● Distributed memory

– Idea: add more computers

– Paradigm: message passing

– Technologies: MPI, PGAS

– Issue: data movement

Shared memory software

● Threading libraries

– Low-level multiprocessing programming

– Independent threads of execution; shared variables

– Synchronization mechanisms (locks, semaphores, conditions, barriers)
● Prevents data races and enforces thread safety

– Libraries: Pthreads, Java Threads, Boost Threads

● Language extensions

– Write one program that is both serial and parallel

– Use pragmas to annotate the program with parallelism guidelines

– Threading and synchronization added automatically (usually by compiler)

– Languages: OpenMP, OpenACC

Distributed memory software

● Message-Passing Interface (MPI)

– Low-level message-passing programming

– Point-to-point operations (Send / Receive)

– Collective operations (Broadcast / Reduce)
● Allow MPI implementations to optimize data movement

– Libraries: OpenMPI, MPICH, MVAPICH

● Partitioned Global Address Space (PGAS)

– Make distributed memory look and act “like” shared memory

– Split address space among all processes

– Message passing is added automatically (usually by compiler)

– Languages: Chapel, X10, Fortress

Distributed networks

● A topology is an arrangement of nodes in a system

– Impacts communication efficiency in a distributed system

– Non-uniform memory access (NUMA) costs

Distributed networks

● A topology is an arrangement of nodes in a system

– Ring, star, line, and tree allow simultaneous connections but
disallow some pairs of point-to-point communication

– Fully connected and bus allow any-to-any communication but do
not scale well

Distributed networks

● Bandwidth: rate at which a link can transmit data

● Latency: time between send and receive

● Bisection: divide the network into two partitions

– Bisection width: total possible simultaneous communications between the partitions

– Bisection bandwidth: sum of bandwidth over all connections between the partitions

● Important: how do these metrics scale as you add nodes?

Two different bisections of a network

Our cluster

● Compute nodes: 12x Dell PowerEdge R430 w/ Xeon E5-2630v3 (8C, 2.4Ghz, HT) 32 GB

● Login node: Dell PowerEdge R430 w/ 2x Xeon E5-2630v3 (8C, 2.4Ghz, HT) 32 GB

● File server: Dell PowerEdge R730 w/ Xeon E5-2640v3 (8C, 2.6Ghz, HT) 32 GB

– Storage: 8x 1.2TB 10K SAS HDD w/ RAID

● Interconnect: Dell N3024 Switch 24x1GbE, 2x10GbE SFP+ (212Gbps duplex)

Hybrid architectures

● Shared memory on the node

– Hardware: CPU and coprocessor (e.g., GPU)

– Enables energy-efficient strong scaling

– Technologies: OpenMP, CUDA, OpenACC, OpenCL

● Distributed memory between nodes

– Hardware: interconnect and distributed FS

– Enables weak scaling w/ efficient I/O

– Technologies: Infiniband, Lustre, HDFS, MPI

History of parallelism

● Uniprogramming / batch (1950s)

– Traditional von Neumann, no parallelism

● Multiprogramming / time sharing (1960s)

– Increased utilization, lower response time

● Multiprocessing / shared memory (1970s)

– Increased throughput, strong scaling

● Distributed computing / distributed memory (1980s)

– Larger problems, weak scaling

● Hybrid computing / heterogeneous (2000s)

– Energy-efficient strong/weak scaling

Shared memory summary

● Shared memory systems can be very efficient

– Low overhead for thread creation/switching

– Uniform memory access times (symmetric multiprocessing)

● They also have significant issues

– Limited scaling (# of cores) due to interconnect costs

– Requires explicit thread management and synchronization

– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity

– Higher granularity: simpler but slower

– Lower granularity: more complex but faster

– Paradigm: synchronization is expensive

Distributed memory summary

● Distributed systems can scale massively

– Hundreds or thousands of nodes, petabytes of memory

– Millions of cores, petaflops of computation capacity

● They also have significant issues

– Non-uniform memory access (NUMA) costs

– Requires explicit data movement between nodes

– More difficult debugging and optimization

● Core design tradeoff: data distribution

– How to partition and arrange the data; is any of it duplicated?

– Goal: minimize data movement

– Paradigm: computation is “free” but communication is not

Parallel & distributed systems

● Hardware architecture

● Software patterns & frameworks

● Interconnects, naming, and routing

● Clocks and synchronization

● Consistency and replication

● Fault tolerance and reliability

● File I/O and data archival

● Security

First half
of CS 470

Second half
of CS 470

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

