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Locality

● Temporal locality: frequently-accessed items will continue to
be accessed in the future

– Theme: repetition is common

● Spatial locality: nearby addresses are more likely to be
accessed soon

– Theme: sequential access is common

● Why do we care?

– Programs with good locality can perform better



  

Caching

● A cache is a small, fast memory that acts as a buffer
or staging area for a larger, slower memory

– Takes advantage of good locality

– Data is transferred to/from the cache in blocks
● For CPUs, also called cache lines

– Cache hit vs. cache miss
● Did the cache have to load from slower memory?

– Cache misses require blocks to be replaced or evicted
● Random replacement
● Least recently used
● Least frequently used



  

Memory hierarchy



  

Cache performance impact

● Metrics

– Miss rate: # misses / # memory accesses

– Hit rate: 1 – miss rate

– Hit time: delay in accessing data for a cache hit

– Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program
reads data from a memory system

● General observations:

– Larger cache = higher hit rate but higher hit time

– Lower miss rates = higher read throughput



  

Cache misses

● A cache always begins cold (empty)

– Every request will be a miss initially

● As the cache loads data, it is warmed up

– This effect can cause performance measurement
variation during experiments if not controlled for

● A working set is a collection of elements needed
repeatedly for a particular computation

– If the working set doesn't fit in cache, this is called a
capacity miss



  

Temporal locality

● Working set size vs. throughput



  

Temporal locality

● Working set size vs. throughput

Possible
source of
superlinear 
speedup!



  

Spatial locality

● Stride vs. throughput



  

Memory mountain

● Stride and WSS vs. read throughput



  

Memory mountain

● Stride and WSS vs. read throughput

(our cluster)

Core i7 Haswell
2.4 GHz
32K L1 d-cache
256K L2 cache
20MB L3 cache
64 B block



  

Memory mountain

● Theirs (CS261 textbook) vs ours (CS470 cluster)

Test your own machine!          http://csapp.cs.cmu.edu/3e/mountain.tar



  

Virtual memory

● Kernel translates between virtual and physical addresses

● Goals:

– Use main memory as a cache for disks

– Provide every process with a uniform view of memory

– Protect processes from interference

No virtual memory With virtual memory
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Instruction-level parallelism

● Original CPU design was serial

– One instruction executes at a time

– Only way to improve is to run faster!

– Limited by speed of light

● One approach: make it smaller

– Shorter circuit = faster circuit

– Limited by manufacturing technology



  

Instruction-level parallelism

● Pipelined CPU design (multiple issue)

– Multiple instructions execute simultaneously

– Instruction-level parallelism at the core level (below threading)

– Split CPU logic into stages and connect stages with clocked registers

– Execution will stall if the next instruction cannot be executed yet



  

Instruction-level parallelism

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Causes stalls and obstructs pipelining

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

   irmovq $10, %rdx
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Instruction-level parallelism

● Out-of-order execution

– Increase saturation of instruction pipeline

– Can alleviate data dependency stalls

– Not always possible

Out-of-order schedule: (8 cycles)

  mrmovq 8(%rbp), %rax
  mrmovq 16(%rbp), %rcx
  mrmovq 24(%rbp), %rdx
  irmovq 0, %rsi
  addq %rax, %rsi
  addq %rcx, %rsi
  addq %rdx, %rsi

Original instructions: (14 cycles)

  irmovq 0, %rsi
  mrmovq 8(%rbp), %rax
  addq %rax, %rsi
  mrmovq 16(%rbp), %rcx
  addq %rcx, %rsi
  mrmovq 24(%rbp), %rdx
  addq %rdx, %rsi

Assumption:
memory accesses
require 3 cycles, all
other instructions
require 1 cycle



  

Instruction-level parallelism

● Speculative execution

– Predict which branch will be taken
● Roll back changes if we guessed wrong

– Can alleviate control dependency stalls

– High cost of incorrect prediction

– Eager variant: execute both branches
● Discard the wrong one once we figure it out



  

Beyond von Neumann

● These improvements can only get us so far

– Need to move beyond single-CPU systems

– Parallel computing: multiple simultaneous CPUs or
threads/processes

– Many different possible architectures



  

System architectures

● Flynn's Taxonomy

– Single Instruction, Single Data (SISD)
● Traditional von Neumann
● Increasingly insufficient!

– Single Instruction, Multiple Data (SIMD)
● Vector instructions (SSE/AVX)
● GPUs and other accelerators

– Multiple Instruction, Multiple Data (MIMD)
● Single Program, Multiple Data (SPMD)
● Shared memory
● Distributed memory

Trend: higher number of slower,
more energy-efficient processors



  

MIMD system architectures

● Shared memory

– Idea: add more CPUs

– Paradigm: threads

– Technologies: Pthreads, OpenMP

– Issue: synchronization

● Distributed memory

– Idea: add more computers

– Paradigm: message passing

– Technologies: MPI, PGAS

– Issue: data movement



  

Shared memory software

● Threading libraries

– Low-level multiprocessing programming

– Independent threads of execution; shared variables

– Synchronization mechanisms (locks, semaphores, conditions, barriers)
● Prevents data races and enforces thread safety

– Libraries: Pthreads, Java Threads, Boost Threads

● Language extensions

– Write one program that is both serial and parallel

– Use pragmas to annotate the program with parallelism guidelines

– Threading and synchronization added automatically (usually by compiler)

– Languages: OpenMP, OpenACC



  

Distributed memory software

● Message-Passing Interface (MPI)

– Low-level message-passing programming

– Point-to-point operations (Send / Receive)

– Collective operations (Broadcast / Reduce)
● Allow MPI implementations to optimize data movement

– Libraries: OpenMPI, MPICH, MVAPICH

● Partitioned Global Address Space (PGAS)

– Make distributed memory look and act “like” shared memory

– Split address space among all processes

– Message passing is added automatically (usually by compiler)

– Languages: Chapel, X10, Fortress



  

Distributed networks

● A topology is an arrangement of nodes in a system

– Impacts communication efficiency in a distributed system

– Non-uniform memory access (NUMA) costs



  

Distributed networks

● A topology is an arrangement of nodes in a system

– Ring, star, line, and tree allow simultaneous connections but
disallow some pairs of point-to-point communication

– Fully connected and bus allow any-to-any communication but do
not scale well



  

Distributed networks

● Bandwidth: rate at which a link can transmit data

● Latency: time between send and receive

● Bisection: divide the network into two partitions

– Bisection width: total possible simultaneous communications between the partitions

– Bisection bandwidth: sum of bandwidth over all connections between the partitions

● Important: how do these metrics scale as you add nodes?

Two different bisections of a network



  

Our cluster

● Compute nodes: 12x Dell PowerEdge R430 w/ Xeon E5-2630v3 (8C, 2.4Ghz, HT) 32 GB

● Login node: Dell PowerEdge R430 w/ 2x Xeon E5-2630v3 (8C, 2.4Ghz, HT) 32 GB

● File server: Dell PowerEdge R730 w/ Xeon E5-2640v3 (8C, 2.6Ghz, HT) 32 GB

– Storage: 8x 1.2TB 10K SAS HDD w/ RAID

● Interconnect: Dell N3024 Switch 24x1GbE, 2x10GbE SFP+ (212Gbps duplex)



  

Hybrid architectures

● Shared memory on the node

– Hardware: CPU and coprocessor (e.g., GPU)

– Enables energy-efficient strong scaling

– Technologies: OpenMP, CUDA, OpenACC, OpenCL

● Distributed memory between nodes

– Hardware: interconnect and distributed FS

– Enables weak scaling w/ efficient I/O

– Technologies: Infiniband, Lustre, HDFS, MPI



  

History of parallelism

● Uniprogramming / batch (1950s)

– Traditional von Neumann, no parallelism

● Multiprogramming / time sharing (1960s)

– Increased utilization, lower response time

● Multiprocessing / shared memory (1970s)

– Increased throughput, strong scaling

● Distributed computing / distributed memory (1980s)

– Larger problems, weak scaling

● Hybrid computing / heterogeneous (2000s)

– Energy-efficient strong/weak scaling



  

Shared memory summary

● Shared memory systems can be very efficient

– Low overhead for thread creation/switching

– Uniform memory access times (symmetric multiprocessing)

● They also have significant issues

– Limited scaling (# of cores) due to interconnect costs

– Requires explicit thread management and synchronization

– Caching problems can be difficult to diagnose

● Core design tradeoff: synchronization granularity

– Higher granularity: simpler but slower

– Lower granularity: more complex but faster

– Paradigm: synchronization is expensive



  

Distributed memory summary

● Distributed systems can scale massively

– Hundreds or thousands of nodes, petabytes of memory

– Millions of cores, petaflops of computation capacity

● They also have significant issues

– Non-uniform memory access (NUMA) costs

– Requires explicit data movement between nodes

– More difficult debugging and optimization

● Core design tradeoff: data distribution

– How to partition and arrange the data; is any of it duplicated?

– Goal: minimize data movement

– Paradigm: computation is “free” but communication is not



  

Parallel & distributed systems

● Hardware architecture

● Software patterns & frameworks

● Interconnects, naming, and routing

● Clocks and synchronization

● Consistency and replication

● Fault tolerance and reliability

● File I/O and data archival

● Security

First half
of CS 470

Second half
of CS 470
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