

CS 470
Spring 2017

Mike Lam, Professor

Semaphores and Conditions

Synchronization mechanisms

● Busy-waiting (wasteful!)

● Atomic instructions (e.g., LOCK prefix in x86)

● Pthreads

– Mutex: simple mutual exclusion (“lock”)

– Condition variable: lock + wait set (wait/signal/broadcast)

– Semaphore: access to limited resources
● Not technically part of Pthreads library (just the POSIX standard)

– Barrier: ensure all threads are at the same point
● Not present in all implementations (requires --std=gnu99 on cluster)

● Java threads

– Synchronized keyword: implicit mutex

– Monitor: lock on object (wait/notify/notifyAll)

Semaphores

● sem_init (sem_t*, pshared, int value)

– Initialize a semaphore to value
● sem_wait (sem_t*)

– If value > 0, decrement value and return

– Else, block until signaled
● sem_post (sem_t*)

– Increment value and signal a blocked thread

– Use a loop to signal multiple blocked threads
● sem_getvalue (sem_t*, int*)

– Return current value
● sem_destroy (sem_t*)

– Clean up a semaphore

Condition variables

● pthread_cond_init (pthread_cond_t*, attrs)

– Initialize a condition variable
● pthread_cond_wait (pthread_cond_t*, pthread_mutex_t*)

– Release mutex and block until signaled

– Re-acquires mutex after waking up

– A variant also exists that times out after a certain period
● pthread_cond_signal (pthread_cond_t*)

– Wake a single blocked thread
● pthread_cond_broadcast (pthread_cond_t*)

– Wake all blocked threads
● pthread_cond_destroy (pthread_cond_t*)

– Clean up a condition variable

Barrier w/ semaphores

Setup:
sem_t count_sem; // initialize to 1
sem_t barrier_sem; // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads == thread_count) {
 waiting_threads = 0;
 sem_post(&count_sem);
 for (int i = 0; i < thread_count-1; i++) {
 sem_post(&barrier_sem);
 }
} else {
 sem_post(&count_sem);
 sem_wait(&barrier_sem);
}

Barrier w/ condition variable

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads == thread_count) {
 waiting_threads = 0;
 cond_broadcast(&done_waiting);
} else {
 cond_wait(&done_waiting, &count_mut);
}
mutex_unlock(&count_mut);

Barrier comparison

Setup:
mutex_t count_mut;
cond_t done_waiting;
volatile int waiting_threads = 0;

Threads:
mutex_lock(&count_mut);
waiting_threads++;
if (waiting_threads == thread_count) {
 waiting_threads = 0;
 cond_broadcast(&done_waiting);
} else {
 cond_wait(&done_waiting, &count_mut);
}
mutex_unlock(&count_mut);

Setup:
sem_t count_sem; // initialize to 1
sem_t barrier_sem; // initialize to 0
volatile int waiting_threads = 0;

Threads:
sem_wait(&count_sem);
waiting_threads++;

if (waiting_threads == thread_count) {
 waiting_threads = 0;
 sem_post(&count_sem);
 for (int i = 0; i < thread_count-1; i++) {
 sem_post(&barrier_sem);
 }
} else {
 sem_post(&count_sem);
 sem_wait(&barrier_sem);
}

Semaphores Condition

Setup:
barrier_t barrier; // initialize to nthreads

Threads:
barrier_wait(&barrier);

Barrier

Condition variables

● Issue: POSIX standard says that pthread_cond_wait might
experience spurious wakeups

– Goal: encourage programmers to write correct code

– Every condition should have an associated boolean predicate

– The predicate should be true before condition is signaled

e.g., “waiting_threads == nthreads”

– Waiting thread should re-check predicate after waiting
● Another thread may have invalidated it!

– Waiting thread should also check for errors (non-zero return value)

– Best practice: use a predicate loop and zero check

while (!predicate) {

 while (pthread_cond_wait(&cond, &mut) != 0);

}

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false; // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
 while (pthread_cond_wait(&cond, &mutex) != 0);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;
pthread_cond_signal(&cond); // or pthread_cond_broadcast
pthread_mutex_unlock(&mutex);

Condition variables

Setup (static):
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile boolean status = false; // protected by mutex

Thread 1:
pthread_mutex_lock(&mutex);
while (!status) {
 while (pthread_cond_wait(&cond, &mutex) != 0);
}
// at this point, status == true and mutex is locked

Thread 2:
// do something that triggers status
pthread_mutex_lock(&mutex);
status = true;

– pthread_cond_signal(&cond); // or pthread_cond_broadcast

pthread_mutex_unlock(&mutex);

initializer macros; can
be used if you don’t
need attributes

C keyword meaning “don’t optimize this
variable; it could change at any time”

check predicate to avoid spurious wakeups

set predicate

Master/worker model

● Common pattern: master/worker threads

– Original “master” thread creates multiple “worker” threads

– Each worker thread does a chunk of the work
● Coordinate via shared global data structure w/ locking

– Main thread waits for workers, then aggregates results

master

workers create

join

Thread pool model (P1)

● Minor tweak on master/worker: thread pool model

– Master thread creates multiple worker threads

– Work queue tracks chunks of work to be done
● Producer/consumer: master enqueues, workers dequeue
● Synchronization required
● Workers idle while queue is empty

master

workers

work queue

master worker

worker

worker

P1 pseudocode

master:

done = false
initialize work queue and sync variables
spawn workers and wait for all threads to initialize

for each (action, num) pair in input:
if action == 'p':

add num to work queue
wake an idle worker thread

else if action == 'w':
wait num seconds

wait until all work has been processed

done = true
wake all worker threads and wait for them to terminate

print results, clean up, and exit

worker:

while not done:
if queue is not empty:

extract num from work queue

update(num)

else:
block until signaled

ONE POSSIBILITY;
NOT THE ONLY
SOLUTION!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

