

CS 470
Spring 2017

Mike Lam, Professor

Performance Analysis

Performance analysis

● Why do we parallelize our programs?

Performance analysis

● Why do we parallelize our programs?

– So that they run faster!

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?

– Asymptotic analysis (i.e., distributed sum)

– Empirical analysis

Empirical analysis issues

● How do you measure time-to-solution accurately?

– CPU cycles, OS clock "ticks", wall time, etc.

● How do you compare across systems?

– Differing CPUs, memories, OSes, etc.

● How do you compare against the original?

– 1-core parallel version will likely be slower

● How do you assess scalability?

– Does performance improve as you add cores?

– How do you quantify the improvement?

– Is there a limit to how far we can improve performance?

Empirical analysis

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of processes

T S
T P

E = efficiency = =
S
p

T S

pT P

should
increase

as p grows

usually
decreases
as p grows

Empirical analysis

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of processes

T S

T P

E = efficiency = =
S
p

T S

pT P

r = serial % of original program

S = speedup =
T S

(1−r)T S

p
+ r T S

T
P
 =

(1−r)T S

p
+ r T S

should
increase

as p grows

usually
decreases
as p grows

Empirical analysis

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of processes

T S

T P

E = efficiency = =
S
p

T S

pT P

r = serial % of original program

S = speedup =
T S

(1−r)T S

p
+ r T S

T
P
 =

(1−r)T S

p
+ r T S

should
increase

as p grows

usually
decreases
as p grows

Amdahl's Law: S ≤ as p increases
1
r

Amdahl's Law

r = serial % of program
S = speedup =

T S

(1−r)T S

p
+ r T S

Amdahl's Law:

S ≤ as p increases1
r

p = # of processors

r = 10% → speedup limited to 10x

r = 5% → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely
proportionally by serial %

Scaling

● Generally, we don't care about any particular TP

– Or with how it compares to TS (except as a sanity check)

● We care more about how TP , S, and E change as p increases

– And/or as the problem size increases

– In general, a program is scalable if E remains fixed as p and the problem
size increase at fixed rates

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change (2x procs → half time)

● Weak scaling: as p increases AND the problem size increases
proportionally, TP stays roughly the same

Scaling

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change

– Sublinear (most common) / superlinear (exceedingly rare) speedup

● Weak scaling: as p increases AND the problem size increases
proportionally, TP stays roughly the same

T
P

p

T
P

p and p_size

Strong
scaling

Weak
scaling

bad bad

good
good

Cluster access

● Detailed instructions online:
w3.cs.jmu.edu/lam2mo/cs470/cluster.html

● Connect to login node via SSH

– Hostname: login.cluster.cs.jmu.edu

– User/password: (your e-ID and password)

● Recommended conveniences

– Set up public/private key access from stu

– Set up .ssh/config entries

– Install Spack for access to more software

http://w3.cs.jmu.edu/lam2mo/cs470/cluster.html

Cluster access

● Things to play with:

– "squeue" or "watch squeue" to see jobs

– "srun <command>" to run an interactive job
● Use “-n <p>” to launch p processes
● Use “-N <n>” to request n nodes (defaults to p/8)
● The given “<command>” will run in every process

– "salloc <command>" to run an interactive MPI job
● Use “-n <p>” to launch p MPI processes

srun hostname
srun -n 4 hostname
srun -n 16 hostname
srun -N 4 hostname
srun sleep 5
srun -N 2 sleep 5

salloc -n 1 mpirun /shared/mpi-pi/mpipi
salloc -n 2 mpirun /shared/mpi-pi/mpipi
salloc -n 4 mpirun /shared/mpi-pi/mpipi
salloc -n 8 mpirun /shared/mpi-pi/mpipi
salloc -n 16 mpirun /shared/mpi-pi/mpipi
(etc.)

What’s the max n?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

