

CS 470
Spring 2017

Mike Lam, Professor

Parallel and Distributed Systems
Advanced System Elective

Intro example

● Six sections of CS 159 this semester

– Total of 180 students

● Suppose there is an exam with 15 questions

– Suppose we have three graders

– How do we finish the grading as quickly as possible?

Video

● #HPCMatters
– https://www.youtube.com/watch?v=9m0gZ2Gft4Q

● A world without supercomputers
– https://www.youtube.com/watch?v=w3aI4sEUJ_Y

https://www.youtube.com/watch?v=9m0gZ2Gft4Q
https://www.youtube.com/watch?v=w3aI4sEUJ_Y

Moore’s Law

Issue: CPU Physics

● More transistors → higher energy use

● Higher energy use → higher heat

● Higher heat → lower reliability

Will Moore’s Law eventually fail?

Moore’s Law

Cover of the January 2017 edition
of Communications of the ACM

Alternative to Moore’s Law

● Scale out, not up

– More processors rather than faster processors

History of Parallelism

● Uniprogramming / batch (1950s) - CS 261

– One process at a time w/ complete control of CPU

● Multiprogramming / time sharing (1960s) - CS 261, CS 450

– Multiple processes taking turns on a single CPU

– Increased utilization, lower response time

● Multiprocessing (1970s) - CS 361, CS 450, CS 470

– Multiple processes share multiple CPUs or cores

– Increased throughput, increased parallelism

● Distributed processing (1980s) - CS 361, CS 470

– Multiple processes share multiple computers

– Capable of massive scaling

Alternative to Moore’s Law

● New problem: writing parallel software

– Running a program in parallel is not always easy

– Sometimes the problem is not easily parallelizable

– Sometimes communication overwhelms computation

– But the stakes are too high to ignore parallelism!

Core issue: parallelization

● As humans, we usually think sequentially

– “Do this, then that” w/ deterministic execution

● Parallel programming requires a different approach

– “Do this and that in parallel (but how?)”

– Introduction of non-determinism

● Sometimes, the best parallel solution is to discard the
serial solution and revisit the problem

Example from IPP

● Compute n values and calculate their sum

● Serial solution:

How should we parallelize this?

What problems will we encounter?

Example from IPP

● Initial parallel solution:

Insight: split up the compute
work, then have the master
core aggregate the results

Shared-mem alternative:
use a mutex!

Example from IPP

● There’s a better way to compute the final sum

– Distribute the work; don’t do all the additions serially

– Fewer computations on the critical path (longest chain of work)

Original version: 7 messages and 7 additions

Clever version: 3 messages and 3 additions

Example from IPP

● Improvement is even greater w/ higher # of cores

● For 1000 cores:

– Original version: 999 messages and 999 additions

– Clever version: 10 messages and 10 additions

This is an asymptotic improvement!

(why?)

Our goals this semester

● Learn some parallel & distributed programming technologies

– Pthreads, MPI, OpenMP, Chapel

● Study parallel & distributed system architectures

– Shared memory, distributed, hybrid, cloud

● Study general parallel computing approaches

– Foster’s methodology, message passing, task/data decomposition

● Analyze application performance

– Speedup, weak/strong scaling, communication overhead

● Explore parallel & distributed issues

– Synchronization, fault tolerance, consistency, security

Course format

● Course calendar on website (bookmark it!)

● Resource links on website

● Private files and grades on Canvas

● Canvas quizzes (1-2 per week)

● In-class exercises (1 per week)

– Canvas submission

● Standard projects (every 2-3 weeks)

– Piazza Q&A w/ Canvas submission

● Elective project (entire semester)

● In-class exams (midterm & final)

Course textbook

● An Introduction to Parallel Programming

– Peter S. Pacheco

● Sources:

– JMU Bookstore ($65)

– Amazon ($48)

– Safari (free, limited sessions)

– Library (on reserve)

Standard projects

● Practice using parallel and distributed technologies

● Practice introspective software development

● Submission: code + reflection + review

– Code can be written in teams of two
● Benefits vs. costs of working in a team

– Reflection must be individual

– Graded code reviews after project submission

Elective project

● Semester-long capstone project

– Teams of 2-4 people

– Individualized topic (but talk to me early!)

– Must involve parallel/distributed systems or software

– Must include significant programming or analysis

– Preferably uses Pthreads, OpenMP, or MPI

– Multiple submissions:
● Proposal, mid-project, poster, final deliverable

– Graded on progress and application of course concepts

– Goal: open-ended project experience

My interests

● High-performance computing (supercomputing)

● Program instrumentation and analysis

● Floating-point behavior

On the website:

● HPC internships at Lawrence Livermore, Los Alamos,
and Oak Ridge national labs

● Student volunteer scholarships for Supercomputing ‘17
in Denver, CO

Parallel Systems

● Shared memory

– Idea: add more CPUs

– Paradigm: threads

– Technologies: Pthreads, OpenMP

● Distributed

– Idea: add more computers

– Paradigm: message passing

– Technologies: MPI, SLURM

Parallelism

● Task parallelism

– Partition tasks among processes

– Pass data between processes

● Data parallelism

– Partition data among processes

– Each process performs all tasks

Parallelism

● Task parallelism

– Partition tasks among processes

– Pass data between processes

● Data parallelism

– Partition data among processes

– Each process performs all tasks

Parallelism example

● Six sections of CS 159 this semester

– Total of 180 students

● Suppose there is an exam with 15 questions

– Suppose we have three graders

– How do we split up the work?

● Two approaches

– Task parallel: each grader grades 5 questions on all 180 exams

– Data parallel: each grader grades all questions on 60 exams

– Latter is better for a distributed system (less communication)

Have a great semester!

● Take course intro survey (free points!)

● Read IPP Ch.1

● Reading quiz tomorrow (shorter than usual)

● Wed & Fri: mini-lecture and exercise

● Start thinking about project groups

● Make sure you can access Piazza

● Make sure you can SSH into login.cluster.cs.jmu.edu

– Must be on JMU network (i.e., go through stu)

– Email me before class on Wednesday if you encounter issues

● Plan on attending Feb 8 speaker series talk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

