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Intro example

● Six sections of CS 159 this semester

– Total of 180 students

● Suppose there is an exam with 15 questions

– Suppose we have three graders

– How do we finish the grading as quickly as possible?



  

Video

● #HPCMatters
– https://www.youtube.com/watch?v=9m0gZ2Gft4Q

● A world without supercomputers
– https://www.youtube.com/watch?v=w3aI4sEUJ_Y

https://www.youtube.com/watch?v=9m0gZ2Gft4Q
https://www.youtube.com/watch?v=w3aI4sEUJ_Y


  

Moore’s Law



  

Issue: CPU Physics

● More transistors → higher energy use

● Higher energy use → higher heat

● Higher heat → lower reliability

Will Moore’s Law eventually fail?



  

Moore’s Law

Cover of the January 2017 edition
of Communications of the ACM



  

Alternative to Moore’s Law

● Scale out, not up

– More processors rather than faster processors



  

History of Parallelism

● Uniprogramming / batch (1950s) - CS 261

– One process at a time w/ complete control of CPU

● Multiprogramming / time sharing (1960s) - CS 261, CS 450

– Multiple processes taking turns on a single CPU

– Increased utilization, lower response time

● Multiprocessing (1970s) - CS 361, CS 450, CS 470

– Multiple processes share multiple CPUs or cores

– Increased throughput, increased parallelism

● Distributed processing (1980s) - CS 361, CS 470

– Multiple processes share multiple computers

– Capable of massive scaling



  

Alternative to Moore’s Law

● New problem: writing parallel software

– Running a program in parallel is not always easy

– Sometimes the problem is not easily parallelizable

– Sometimes communication overwhelms computation

– But the stakes are too high to ignore parallelism!



  

Core issue: parallelization

● As humans, we usually think sequentially

– “Do this, then that” w/ deterministic execution

● Parallel programming requires a different approach

– “Do this and that in parallel (but how?)”

– Introduction of non-determinism

● Sometimes, the best parallel solution is to discard the
serial solution and revisit the problem



  

Example from IPP

● Compute n values and calculate their sum

● Serial solution:

How should we parallelize this?

What problems will we encounter?



  

Example from IPP

● Initial parallel solution:

Insight: split up the compute
work, then have the master
core aggregate the results

Shared-mem alternative:
use a mutex!



  

Example from IPP

● There’s a better way to compute the final sum

– Distribute the work; don’t do all the additions serially

– Fewer computations on the critical path (longest chain of work)

Original version: 7 messages and 7 additions

Clever version: 3 messages and 3 additions



  

Example from IPP

● Improvement is even greater w/ higher # of cores

● For 1000 cores:

– Original version: 999 messages and 999 additions

– Clever version: 10 messages and 10 additions

This is an asymptotic improvement!

(why?)



  

Our goals this semester

● Learn some parallel & distributed programming technologies

– Pthreads, MPI, OpenMP, Chapel

● Study parallel & distributed system architectures

– Shared memory, distributed, hybrid, cloud

● Study general parallel computing approaches

– Foster’s methodology, message passing, task/data decomposition

● Analyze application performance

– Speedup, weak/strong scaling, communication overhead

● Explore parallel & distributed issues

– Synchronization, fault tolerance, consistency, security



  

Course format

● Course calendar on website (bookmark it!)

● Resource links on website

● Private files and grades on Canvas

● Canvas quizzes (1-2 per week)

● In-class exercises (1 per week)

– Canvas submission

● Standard projects (every 2-3 weeks)

– Piazza Q&A w/ Canvas submission

● Elective project (entire semester)

● In-class exams (midterm & final)



  

Course textbook

● An Introduction to Parallel Programming

– Peter S. Pacheco

● Sources:

– JMU Bookstore ($65)

– Amazon ($48)

– Safari (free, limited sessions)

– Library (on reserve)



  

Standard projects

● Practice using parallel and distributed technologies

● Practice introspective software development

● Submission: code + reflection + review

– Code can be written in teams of two
● Benefits vs. costs of working in a team

– Reflection must be individual

– Graded code reviews after project submission



  

Elective project

● Semester-long capstone project

– Teams of 2-4 people

– Individualized topic (but talk to me early!)

– Must involve parallel/distributed systems or software

– Must include significant programming or analysis

– Preferably uses Pthreads, OpenMP, or MPI

– Multiple submissions:
● Proposal, mid-project, poster, final deliverable

– Graded on progress and application of course concepts

– Goal: open-ended project experience



  

My interests

● High-performance computing (supercomputing)

● Program instrumentation and analysis

● Floating-point behavior

On the website:

● HPC internships at Lawrence Livermore, Los Alamos,
and Oak Ridge national labs

● Student volunteer scholarships for Supercomputing ‘17 
in Denver, CO



  

Parallel Systems

● Shared memory

– Idea: add more CPUs

– Paradigm: threads

– Technologies: Pthreads, OpenMP

● Distributed

– Idea: add more computers

– Paradigm: message passing

– Technologies: MPI, SLURM



  

Parallelism

● Task parallelism

– Partition tasks among processes

– Pass data between processes

● Data parallelism

– Partition data among processes

– Each process performs all tasks
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Parallelism example

● Six sections of CS 159 this semester

– Total of 180 students

● Suppose there is an exam with 15 questions

– Suppose we have three graders

– How do we split up the work?

● Two approaches

– Task parallel: each grader grades 5 questions on all 180 exams

– Data parallel: each grader grades all questions on 60 exams

– Latter is better for a distributed system (less communication)



  

Have a great semester!

● Take course intro survey (free points!)

● Read IPP Ch.1

● Reading quiz tomorrow (shorter than usual)

● Wed & Fri: mini-lecture and exercise

● Start thinking about project groups

● Make sure you can access Piazza

● Make sure you can SSH into login.cluster.cs.jmu.edu

– Must be on JMU network (i.e., go through stu)

– Email me before class on Wednesday if you encounter issues

● Plan on attending Feb 8 speaker series talk
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