CS 470 Monte Carlo Chapel Activity
1. Copy the starter file tarball (/shared/pi_chapel.tar.gz) to your home directory. Extract the files (“tar –zxvf pi_chapel.tar.gz”), and load the Chapel module (“module load chapel”).

2. Read the serial program and make sure you understand it. Compile the program using the provided make file and run the provided test script (run.sh) to see the testing output format.
CAUTION: PERFORMANCE NUMBERS OBTAINED ON THE LOGIN NODE ARE NOT RELIABLE!

You’re welcome to debug and test your program on the login node for convenience (be considerate!).
However, you should use the provided SLURM submission script (submit.sh) for final performance testing.

3. Implement a data-parallel version in pi_datapar.chpl. This version should not contain any explicit parallelism; i.e., it should not contain any code that is dependent on the number of threads that the program may use. How well does it scale as you increase the number of task-parallel threads? Include performance results and a short analysis in a comment at the top of the file.
HINT: To make it data-parallel, you might want some data! One idea is to create arrays to store x- and y-coordinates as well as the result of every dart toss. Note that in Chapel, arrays are initialized with zeroes by default.
HINT: The RandomStream object has a method fillRandom(X: [] real(64)) that initializes the argument array X
with random values, operating with data parallelism when possible.

HINT: The “forall” loop is the basic data-parallel construct in Chapel. You may also wish to use a reduction.
HINT: Use the built-in “--dataParTasksPerLocale=X” command-line switch to change the number of data-parallel threads. The run.sh script will test this for you.
4. Implement a task-parallel version in pi_taskpar.chpl. This version should explicitly split the dart throws into equal-sized chunks based on a numThreads config variable and then run each chunk in parallel. How well does it scale with the number of threads? Include performance results and a short analysis in a comment at the top of the file.
HINT: The “coforall” loop is a basic task-parallel construct in Chapel.
HINT: The “sync” keyword can be used in a variable declaration to protect multi-threaded access to that variable.
HINT: Note the new numThreads config variable. Use the “--numThreads=X” command-line switch to set this variable—you should use it to control the cardinality of the task parallelism (i.e., thread count).. The run.sh script will test this for you.
5. Submit your final datapar.chpl and taskpar.chpl on Canvas by Friday at midnight. If you worked in groups, each person should submit a copy of the files; all files from your group must match and include all names in a comment at the top.

YOU DO NOT NEED TO SUBMIT THIS DOCUMENT, ONLY THE SOURCE CODE.
