

CS 470
Spring 2024

Mike Lam, Professor

Fault Tolerance

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 8)

Various online sources, including github.com/donnemartin/system-design-primer

Fault tolerance

● Desirable system properties
● Failure models
● Dealing with failure

Desirable system properties

● We want dependable systems
– Available: ready for use at any given time
– Reliable: runs continuously without failure
– Safe: nothing catastrophic happens upon failure
– Maintainable: easy to repair
– Similar to definitions for dependable software (CS 345)

Problem

● Inherent tension between:
– Consistency: reads see previous writes ("safety")
– Availability: operations finish relatively quickly ("liveness")
– Partition tolerance: failures don't affect correctness

Systems design involves tradeoffs

Problem

● Which of the following is most important in a
distributed system?
– A. Consistency
– B. Availability
– C. Partition tolerance

CAP Theorem

● A system cannot be simultaneously consistent (C),
available (A), and partition-tolerant (P)
– We can only have two of three
– In a non-distributed system, P isn't needed

● Tradeoff: latency vs. consistency ("PACELC Theorem")

– In a distributed system, P isn't optional
● Thus, we must choose: CP or AP
● I.e., consistency or availability

Original conjecture by Eric Brewer: http://dl.acm.org/citation.cfm?id=822436
Formal theorem: http://dl.acm.org/citation.cfm?id=564601

C A

P NOT
POSSIBLE!

Problem

● Which of the following is least important in a
distributed system?
– A. Consistency
– B. Availability
– C. Partition tolerance

Consistency

● Usual choice: compromise on consistency
– Strong consistency: reads see all previous writes

(sequential consistency)
● Alternatively, continuous w/ short interval
● Causal consistency: reads see all causally-related writes

– Eventual consistency: reads eventually see all
previous writes (continuous w/ long interval)

● E.g., "guaranteed convergence"

– Weak consistency: reads may not see previous writes
● E.g., "best effort"

We’ll cover these models in more detail next week

Availability

● Active-passive (asymmetric)
– Active server handles all requests
– Backup/failover server takes over if main fails

● Active-active (symmetric)
– Multiple servers share request load
– Load re-balances if one fails

Active-passive Active-active

Master Backup Load
balancer

Server 1

Server 2

Main Backup

Availability

● The JMU CS software mirror consists of two servers
mirror1 and mirror2. At any given point, one is
designated “primary” and handles all incoming traffic.
If it fails, the other server will take over as primary.
Which availability model is this closest to?
– A. Active-passive
– B. Active-active
– C. Passive-passive

Failure models

● Sometimes, consistency/availability tradeoff
decisions depend on the failure model:
– What kinds of failures happen?
– How often do they happen?
– What are the effects of a failure?
– At what level of abstraction does the failure take place?
– How hard is it to debug a failure?

Kinds of failures

● Soft vs hard failures
– Soft failure: a.k.a. silent data corruption (SDC)

● Often corrected by hardware

– Hard failure: a component of a system stops working
● Hard failures in a non-distributed system are usually fatal

– The entire system must be restarted
● Hard failures in a distributed system can be non-fatal

– Partial failure: a failure of a subset of the components of a
distributed system

– If the system is well-designed, it may be able to recover and
continue after a partial failure

Kinds of failures

● A buffer overflow bug causes inadvertent data
corruption. What is this an example of? (select
all that apply)
– A. Soft failure
– B. Hard failure
– C. Partial failure

Kinds of failures

● One of the JMU cluster nodes goes offline due
to a faulty power supply. What is this an
example of? (select all that apply)
– A. Soft failure
– B. Hard failure
– C. Partial failure

Measuring failure

● Failure rate (λ): failures per unit of time
● Mean Time Between Failures (MTBF) = 1 / λ

– Assumes constant failure rate
● Failures In Time (FIT) = failures expected in one

billion device-hours
– MTBF = 1e9 x 1/FIT

On a 10 million core machine, 1 FIT means once every 100 hours
or once every ~4.2 days!

Measuring failure

● If a JMU cluster hard drive dies on average
every 5 years, what is the failure rate?
– A. 0.05 failures/yr
– B. 0.2 failures/yr
– C. 0.5 failures/yr
– D. 2.0 failures/yr
– E. 5.0 failures/yr

Effects of failure

● Crash: the system halts
● Omission: the system fails to respond to requests
● Timing: the system responds too slowly
● Response: the system responds incorrectly
● Arbitrary failure: anything else (unpredictable!)

– Sometimes called "Byzantine" failures if they can
manifest in such a way that prevents future consensus

Levels of failure

● Some systems distinguish between failure levels:
– A failure occurs when a system cannot meet its specification
– An error is the part of a system's state that leads to a failure
– A fault is the low-level cause of an error
– Most common source of faults: memory or disk storage

● If a system can provide dependable services even in
the presence of faults, that system is fault-tolerant

Debugging faults

● Permanent faults reproduce deterministically
– These are usually the easiest to fix

● Intermittent faults recur but do not always reproduce
deterministically
– Unfortunately common in distributed systems
– Heisenbug: a software defect that seems to change or

disappear during debugging
● Transient faults occur only once

– Often the result of physical phenomena
– Single-event upset (SEU): caused by ions

https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/

https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/

Debugging faults

● Suppose there is a bug in one of your CS 361
projects that is a result of improper
synchronization, causing you to fail one of the
automated tests. However, it does not
reproduce in gdb. What kind of fault is this?
– A. Permanent
– B. Intermittent
– C. Transient

Debugging faults

● Suppose your roommate trips and falls,
accidentally hitting the switch on your surge
protector and causing your desktop to lose
power. What kind of fault is this?
– A. Permanent
– B. Intermittent
– C. Transient

Bit errors

● Bit error: low-level fault where a bit is read/written incorrectly
● Single-bit vs. double-bit vs. multi-bit

– Single-Bit Error (SBE), Double-Bit Error (DBE)
– Hamming distance: # of bits different

● Potential DRAM source: "weak bits" in hardware
– Electrical charge stored in a memory cell capacitor

– Critical charge (Qcrit) is the threshold between 0 and 1 values

– Refreshed often, but sometimes still read incorrectly
● Ionizing radiation and cosmic rays

– E.g., single-event upsets

Example: GPU fault study

Tiwari, Devesh, et al. "Understanding gpu errors on large-scale hpc systems and the implications for system design and operation."
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 2015.
https://pdfs.semanticscholar.org/3b2c/8bb9471bd52a40b72a61bfede076f4d414b5.pdf

The Titan supercomputer
has 18,688 GPUs

Dealing with failure

● Prevention: eliminate the possibility of failure
– Often impossible in a distributed system

● Detection: discovering failures
– Active (pinging) vs. passive (wait for messages)
– Issue: unreliability of timeouts

● Avoidance: divert around failure possibilities
– Only possible in particular circumstances

● Recovery: restore valid system state after a failure
– Forward error correction includes additional info for recovery

Detection and avoidance

● Data-centric
– Redundancy, diversity, and replication

● E.g., dual modular redundancy (DMR), TMR

– Parity bits, checksums, and hashes
● E.g., cyclic redundancy check (CRC), MD5, SHA

● Computation-centric
– Acknowledgement (ACK)-based protocols
– Consensus and voting protocols

● One-phase vs. two-phase (e.g., Paxos)

Detection and avoidance

● How many total bits must be transmitted to
detect a single-bit error?
– A. 1
– B. 2
– C. 3
– D. 4
– E. 5

Detection and avoidance

● How many total bits must be transmitted to
detect a double-bit error?
– A. 1
– B. 2
– C. 3
– D. 4
– E. 5

Recovery

● How many total bits must be transmitted to
correct a single-bit error?
– A. 1
– B. 2
– C. 3
– D. 4
– E. 5

Recovery in hardware

● Hardware (general space vs. safety tradeoff)
– Dual modular redundancy (DMR) can detect a single-bit error
– Triple modular redundancy (TMR) can recover one corrupted bit

● Or detect a double-bit error

– Parity bits
● Even parity bits are 0 if the # of 1s is even; 1 otherwise

– Special case of CRC (polynomial is x+1)
● Odd parity bits are 1 if the # of 1s is even; 0 otherwise

DMR:

 0 0 ok (value = 0)
 0 1 SBE
 1 0 SBE
 1 1 ok (value = 1)

TMR:

 0 0 0 ok (value = 0)
 0 0 1 SBE (value = 0) or DBE
 0 1 0 SBE (value = 0) or DBE
 0 1 1 SBE (value = 1) or DBE
 1 0 0 SBE (value = 0) or DBE
 1 0 1 SBE (value = 1) or DBE
 1 1 0 SBE (value = 1) or DBE
 1 1 1 ok (value = 1)

Parity

● Which of the following bytes has been corrupted
during transmission, assuming 7-bit even parity?
– A. 01010101

– B. 10100101

– C. 00001111

– D. 01101000

– E. 11111111

Recovery codes

● Hamming codes (often used in ECC memory) use parity bits
– Bit position 2i is a parity covering all bits with the (i+1)th least significant bit set
– Each bit is covered by a unique set of parity bits
– Error locations are identified by summing the positions of the faulty parity bits
– Can detect & recover SBEs (can be extended to detect DBEs)

● Reed-Solomon codes are more complex (but widely used)
– Function values or coefficients of a polynomial

Hamming code: parity bits and corresponding data bits
from https://en.wikipedia.org/wiki/Hamming_code

Recovery codes

● QR codes provide multiple recovery % options
– Four levels: L (7%), M (15%), Q (25%), H (30%)

Recovery in software

● Software level
– Log: record of operations (can enable recovery)
– Checkpoint: snapshot of current state

● Independent vs. coordinated checkpointing
● Standalone vs. incremental checkpointing
● Tradeoff: space vs. time (how much to save?)

– Restore: revert system state to a checkpoint
● May require replaying some calculations
● Can a checkpoint be restored on a different system?

– If so, how?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

