CS 470 Spring 2024

Mike Lam, Professor

xXxMPI_360_NOSYNCxXx

Naming

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4) Various online sources (including openclipart.org)

Naming

- "What's in a name?"
 - "That which we call a .com by any other TLD would load just as quickly."

"There are only two hard things in Computer Science: cache invalidation and naming things."

- Phil Karlton (Netscape)

Trivia

- What is Netscape?
 - A. A web browser
 - B. A web directory
 - C. An internet service provider
 - D. A brand name
 - E. All of the above
 - F. None of the above

Addressing

- Concept of an entity and its name vs. its address
- Some names are true identifiers
 - Each identifier refers to at most one entity
 - Each entity is referred to by at most one identifier
 - Identifiers are never re-used at another time
- Name-to-address binding
 - Name space: domain of all possible names
 - Static vs. dynamic
 - Central vs. decentralized
 - Name server: central host responsible for maintaining bindings

Addressing

- Which of the following is the most decentralized name binding?
 - A. Mailing addresses
 - B. Discord server nicknames
 - C. Subreddits
 - D. Human nicknames
 - E. Xbox gamertags

Naming schemes

```
eb40af8e
                       hin/
c6c1904c
                         bash
                                           (444, Molloy)
                                           (445, Sprague)
                       etc/
0eceda3e
                                           (456, Weikle)
28dec8ba
                         passwd
                                           (458, Heydari)
4b6683e7
                       usr/
                                           (470, Lam)
88c9618b
                         bin/
                                           (482, Wang)
3566223f
                           nano
38b22b10
                           vim
                         lib/
```

Flat

Structured

Attribute-based

Flat naming

- Identifiers contain no location information
- Various lookup approaches
 - Broadcast / multicast
 - Forwarding pointers
 - Proximity routing
- Examples: ARP, Chord

Distributed hash tables

- Chord uses an m-bit identifier space and modulo arithmetic
 - Key k is stored at the node with the smallest id \geq k
- Each node maintains a finger table of forward shortcuts
- To look up k, repeatedly follow lookups in finger table
 - Goal: halve distance to destination every hop

Addressing

- Which of the following is the maximum size of the finger table for a 256-node Chord network?
 - A. 0
 - B. 1
 - C. 8
 - D. 32
 - E. 128

Structured naming

- Root vs. interior vs. leaf nodes
- Absolute vs. relative names
 - Global vs. local names
- Iterative vs. recursive resolution
- Linking and aliasing
 - Hard vs. soft (symbolic) links
- Mounting and mount points

com DNS Server

DNS Server

DNS Server

vahoo.com

DNS Server

bin

dsk

fd0

1p0

romeo

home

lib

juliet

tmp

sbin

sbin

mit.edu

DNS Server

usr

lib

var

local

Filesystem Size Used Avail Use% Mounted on /dev/mapper/rhel_login01-root 23G 28G 46% / /dev/sda6 497M 206M 292M 42% /hoot nfs.cluster.cs.jmu.edu:/nfs/home 100G 96G 5% /nfs/home 4.6G nfs.cluster.cs.jmu.edu:/nfs/scratch 2.0T 862G 1.2T 43% /scratch

sisu.edu

DNS Server

Naming

- Which of the following is an example of a structured (as opposed to flat) name binding?
 - A. Mailing addresses
 - B. Discord server nicknames
 - C. Subreddits
 - D. Human nicknames
 - E. Xbox gamertags

- IPv4: 32 bits four octets w/ CIDR notation (/8, /16, etc.)
 - Classful addressing: Class A, Class B, Class C
 - IETF and IANA allocate addresses (32 bits 4 billion total addresses)
 - Published in 1981; now nearly exhausted
- Notable networks
 - Private (10.0.0.0/8)
 - Loopback (127.0.0.0/8)
 - JMU (134.126.0.0/16)
 - Private (192.168.0.0/16)

An IPv4 address (dotted-decimal notation)

from https://en.wikipedia.org/wiki/IPv4

- What is the total number of addresses in IPv4?
 - A. 2⁸
 - B. 2¹⁶
 - C. 2³²
 - D. 2⁶⁴
 - E. 2¹²⁸

- IPv6 published in 1998
 - 128 bits 3.4×10³⁸ total addresses
 - Eight groups of 16 bits (4 hex chars)
 - 64-bit routing prefix, 64-bit host/interface identifier

- What is the total number of addresses in IPv6?
 - A. 28
 - B. 2¹⁶
 - C. 2³²
 - D. 2⁶⁴
 - E. 2¹²⁸

IPv4 vs. IPv6

- The IPv6 name space is far larger than you think!
 - In fact, there is NO WAY to draw the two address spaces to scale.
 If IPv4 were a 1.6-inch square, IPv6 would be a square the size of the solar system!
 - $2^{128} \approx 10^{38}$ » the number of drops of water in all the world's oceans (10²⁵) or the number of stars in the observable universe (10²³)
 - "If we had been assigning IPv6 addresses at a rate of 1 billion per second since the earth was formed, we would have by now used up less than one trillionth of the address space."
 - "We could assign an IPv6 address to every atom on the surface of the earth – and have enough addresses left over for another hundred earths."

Sources:

- http://waitbutwhy.com/2014/11/1000000-grahams-number.html
- http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm
- http://www.brucebnews.com/2010/10/ipv6-and-really-large-numbers/

Why haven't we transitioned?

Advantages

- Solves IP naming problem pseudo-permanently
- Deals with explosion of Internet of Things (IoT) devices requiring an address
- Increasing cost to acquire IPv4 addresses

Obstacles

- Network Address Translation (NAT) allows multiple hosts to use a single public IP address
- IPv4 blocks have become more "fluid"
- Lack of expertise managing multi-protocol networks

Attribute-based naming

- Human-friendly resource identifiers
- Storage of (key, value) pairs
- Often implemented with distributed hash tables
 - Centralized vs. decentralized lookups
 - You implemented this in P3!
- Semantic overlay networks
 - Nodes maintain explicit links to "semantically proximate" nodes
 - Most useful in distributed peer-to-peer networks
 - Exploit small-world effect

Attribute-based naming

- Which of the following is the best example of a semantic overlay network?
 - A. Mailing addresses
 - B. Discord server nicknames
 - C. Subreddits
 - D. Human nicknames
 - E. Xbox gamertags