CS 470

 Spring 2024
Hello
 my name is

xXxMPI_360_NOSYNCxXx

Mike Lam, Professor

Naming

Content taken from the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)
Various online sources (including openclipart.org)

Naming

- "What's in a name?"
- "That which we call a .com by any other TLD would load just as quickly."
"There are only two hard things in Computer Science: cache invalidation and naming things."
- Phil Karlton (Netscape)

Trivia

- What is Netscape?
- A. A web browser
- B. A web directory
- C. An internet service provider
- D. A brand name
- E. All of the above
- F. None of the above

Addressing

- Concept of an entity and its name vs. its address
- Some names are true identifiers
- Each identifier refers to at most one entity
- Each entity is referred to by at most one identifier
- Identifiers are never re-used at another time
- Name-to-address binding
- Name space: domain of all possible names
- Static vs. dynamic
- Central vs. decentralized
- Name server: central host responsible for maintaining bindings

Addressing

- Which of the following is the most decentralized name binding?
- A. Mailing addresses
- B. Discord server nicknames
- C. Subreddits
- D. Human nicknames
- E. Xbox gamertags

Naming schemes

eb40af8e c6c1904c 0eceda3e 28dec8ba 4b6683e7 88c9618b 3566223f 38b22b10

Flat
bin/
bash
etc/ passwd
usr/
bin/
nano
vim
lib/
/

Structured
(444, Molloy)
(445, Sprague)
(456, Weikle)
(458, Heydari)
(470, Lam)
(482, Wang)

Attribute-based

Flat naming

- Identifiers contain no location information
- Various lookup approaches
- Broadcast / multicast
- Forwarding pointers
- Proximity routing
- Examples: ARP, Chord

Distributed hash tables

- Chord uses an m-bit identifier space and modulo arithmetic
- Key k is stored at the node with the smallest id $\geq k$
- Each node maintains a finger table of forward shortcuts
- To look up k, repeatedly follow lookups in finger table
- Goal: halve distance to destination every hop

Addressing

- Which of the following is the maximum size of the finger table for a 256-node Chord network?
- A. 0
- B. 1
- C. 8
- D. 32
- E. 128

Structured naming

- Root vs. interior vs. leaf nodes
- Absolute vs. relative names
- Global vs. local names
- Iterative vs. recursive resolution
- Linking and aliasing
- Hard vs. soft (symbolic) links

- Mounting and mount points
- Examples: file systems, DNS, NFS

Size Used Avail Use\% Mounted on

Root Server

Naming

- Which of the following is an example of a structured (as opposed to flat) name binding?
- A. Mailing addresses
- B. Discord server nicknames
- C. Subreddits
- D. Human nicknames
- E. Xbox gamertags
- IPv4: 32 bits - four octets w/ CIDR notation (/8, /16, etc.)
- Classful addressing: Class A, Class B, Class C
- IETF and IANA allocate addresses (32 bits - 4 billion total addresses)
- Published in 1981; now nearly exhausted
- Notable networks
- Private (10.0.0.0/8)
- Loopback (127.0.0.0/8)
- JMU (134.126.0.0/16)
- Private (192.168.0.0/16)

An IPv4 address (dotted-decimal notation)

Thirty-two bits (4×8), or 4 bytes
from https://en.wikipedia.org/wiki/IPv4

- What is the total number of addresses in IPv4?
- A. 2^{8}
- B. 2^{16}
- C. 2^{32}
- D. 2^{64}
- E. 2^{128}
- IPv6 published in 1998
- 128 bits -3.4×10^{38} total addresses
- Eight groups of 16 bits (4 hex chars)
- 64-bit routing prefix, 64-bit host/interface identifier

0000000000000000:0000000000000000:0000000000000000:00000000000000
-What is the total number of addresses in IPv6?
$-\mathrm{A} .2^{8}$

- B. 2^{16}
- C. 2^{32}
- D. 2^{64}
- E. 2^{128}
- The IPv6 name space is far larger than you think!
- In fact, there is NO WAY to draw the two address spaces to scale. If IPv4 were a 1.6-inch square, IPv6 would be a square the size of the solar system!
$-2^{128} \approx 10^{38} \gg$ the number of drops of water in all the world's oceans $\left(10^{25}\right)$ or the number of stars in the observable universe $\left(10^{23}\right)$
- "If we had been assigning IPv6 addresses at a rate of 1 billion per second since the earth was formed, we would have by now used up less than one trillionth of the address space."
- "We could assign an IPv6 address to every atom on the surface of the earth - and have enough addresses left over for another hundred earths."

Sources:

- http://waitbutwhy.com/2014/11/1000000-grahams-number . html
- http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm
- http://www.brucebnews.com/2010/10/ipv6-and-really-large-numbers/

Why haven't we transitioned?

- Advantages
- Solves IP naming problem pseudo-permanently
- Deals with explosion of Internet of Things (IoT) devices requiring an address
- Increasing cost to acquire IPv4 addresses
- Obstacles
- Network Address Translation (NAT) allows multiple hosts to use a single public IP address
- IPv4 blocks have become more "fluid"
- Lack of expertise managing multi-protocol networks

Attribute-based naming

- Human-friendly resource identifiers
- Storage of (key, value) pairs
- Often implemented with distributed hash tables
- Centralized vs. decentralized lookups
- You implemented this in P3!
- Semantic overlay networks
- Nodes maintain explicit links to "semantically proximate" nodes
- Most useful in distributed peer-to-peer networks
- Exploit small-world effect

Attribute-based naming

- Which of the following is the best example of a semantic overlay network?
- A. Mailing addresses
- B. Discord server nicknames
- C. Subreddits
- D. Human nicknames
- E. Xbox gamertags

