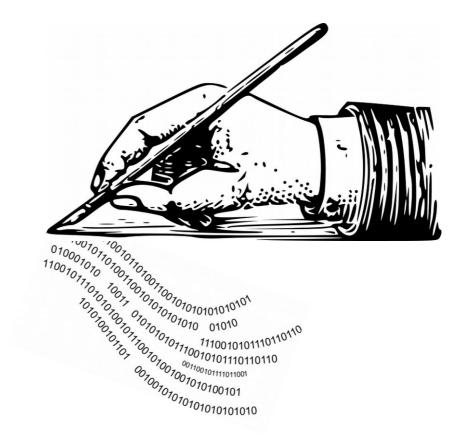
CS 470 Spring 2024

Mike Lam, Professor



Parallel Algorithms

Graphics and content taken from IPP section 2.7 and the following:

Parallel program development

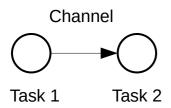
- Writing efficient parallel code is hard
- We have covered two generic paradigms ...
 - Shared-memory multithreading
 - Distributed message-passing
- ... and four specific technologies
 - Pthreads
 - OpenMP
 - CUDA
 - MPI
- Given a problem, how do we *more generally* approach the development of a parallel program that solves it?

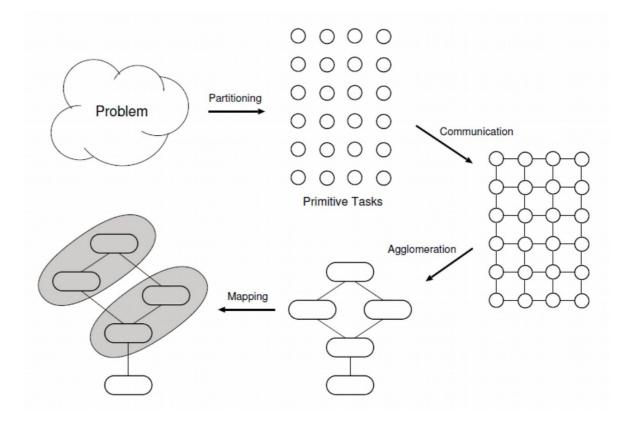
Method vs. methodology

- Method: a systematic process or way of doing a task
- Methodology: analysis of methods relevant to a discipline
 - Literally: "the study of methods"
 - Goal: guidelines or best practices for a class of methods
- Parallel algorithms
 - There is no single **method** for creating efficient parallel algorithms
 - However, there are some good **methodologies** that can guide us
 - We will study one: Foster's methodology

Foster's methodology

- Task: executable unit along with local memory and I/O ports
- Channel: message queue connecting tasks' input and output ports
- Drawn as a graph, tasks are vertices and channels are edges
- Steps:
 - 1) Partitioning
 - 2) Communication
 - 3) Agglomeration
 - 4) Mapping



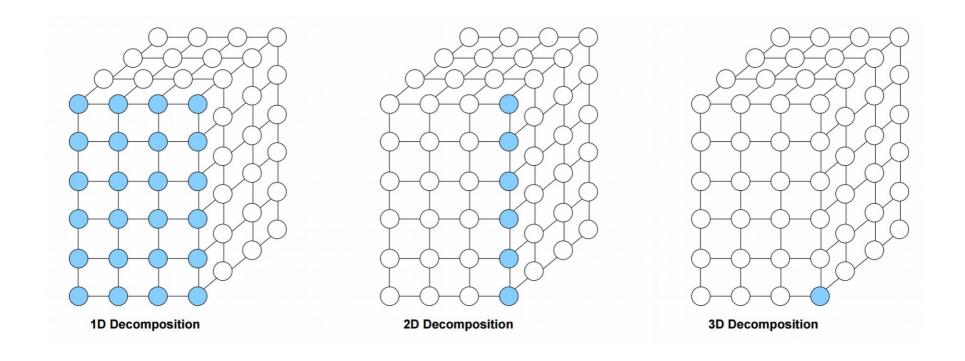


Partitioning

- Goal: discover as much parallelism as possible
- Divide computation into as many primitive tasks as possible
 - Avoid redundant computation
 - Primitive tasks should be roughly the same size
 - Number of tasks should increase as the problem size increases
 - This helps ensure good scaling behavior
 - Data vs. task decomposition

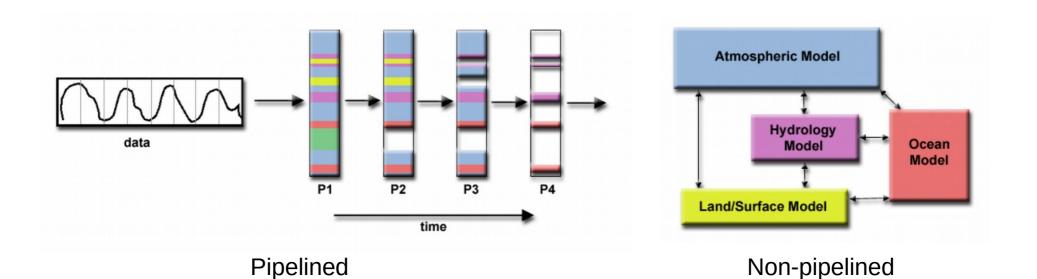
Partitioning

- Domain ("data") decomposition
 - Break tasks into segments of various granularities by data



Partitioning

- Functional ("task") decomposition
 - Separation by task type
 - Domain/data decomposition can often be used inside of individual tasks

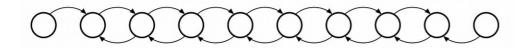


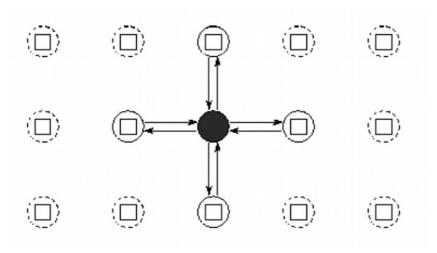
Communication

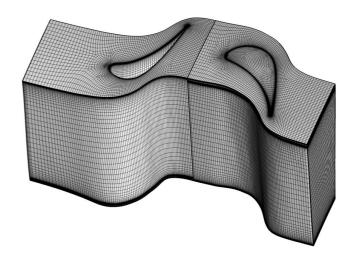
- Goal: minimize overhead
- Identify which tasks must communicate and how
 - Local (few tasks) vs. global (many tasks)
 - Structured (regular) vs. unstructured (irregular)
 - Prefer local, structured communication
 - Tasks should perform similar amounts of communication
 - This helps with load balancing
 - Communication should be concurrent wherever possible

Communication

• Examples of local communication:



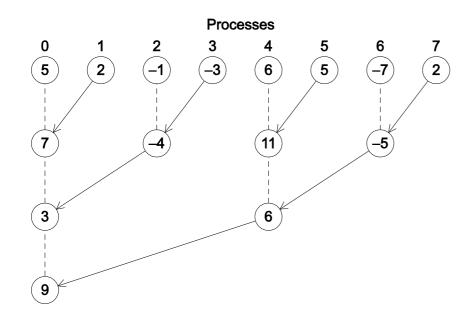


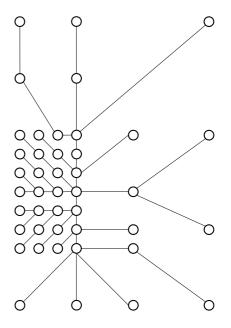


Unstructured

Communication

• Examples of global communication:





Structured

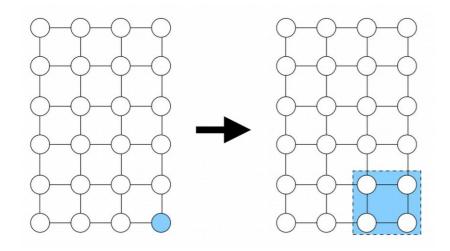
Unstructured

Agglomeration

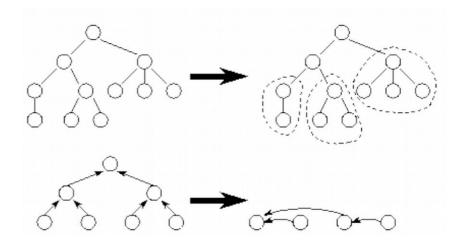
- Goal: Reduce messages and simplify programming
- Combine tasks into groups, increasing locality
 - Groups should have similar computation and communication costs
 - Task counts should still scale with processor count and /or problem size
 - Minimize software engineering costs
 - Agglomeration can prevent code reuse

Agglomeration

• Examples:



Agglomeration of four local tasks



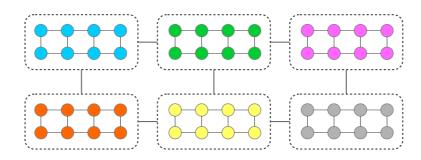
Agglomeration of tree-based tasks

Mapping

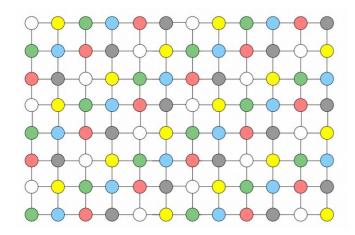
- Assign tasks (or task groups) to processors/nodes
 - Block vs. cyclic
 - Static vs. dynamic
- Goal: minimize execution time
 - Alternately: maximize processor utilization
 - On a distributed system: minimize communication
- Strategies:
 - 1) Place concurrent tasks on different nodes
 - 2) Place frequently-communicating tasks on the same node
- Problem: these strategies are often in conflict!
 - The general problem of optimal mapping is NP-complete

Mapping

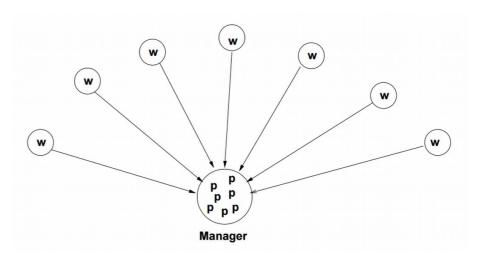
• Examples:



Block mapping



Cyclic mapping



Dynamic mapping

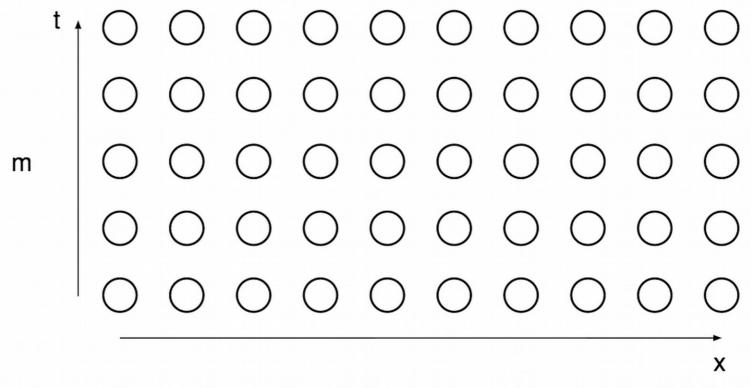
Problem

- General statement: Determine the temperature changes in a thin cylinder of uniform material with constant-temperature boundary caps over a given time period, given the size of the cylinder and its initial temperature
- General solution: solve partial differential equation(s)
 - Often too difficult or expensive to solve analytically
- Approximate solution: finite difference method
 - Discretize space (1d grid) and time (ms)
- Goal: Parallelize this solution, using Foster's methodology as a guide

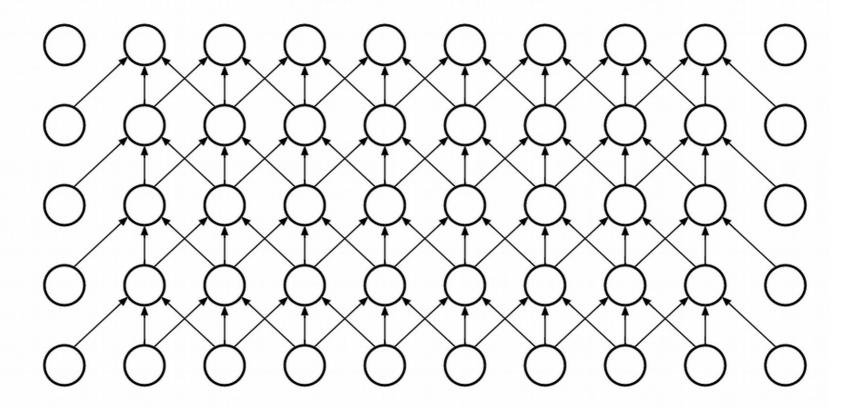
Partitioning:

Make each T(x, t) computation a primitive task.

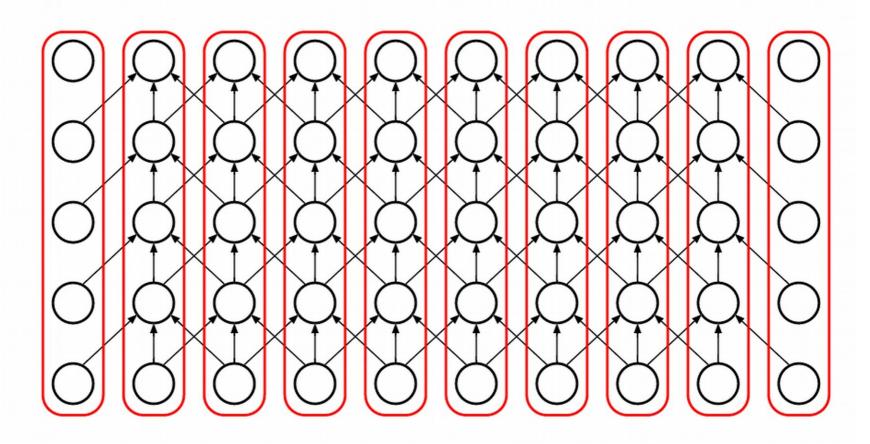
⇒ 2-dimensional domain decomposition



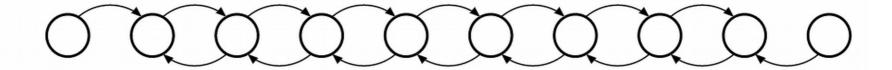
Communication:



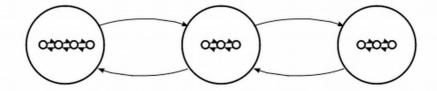
Agglomeration:



Agglomeration:

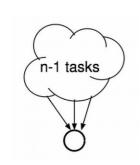


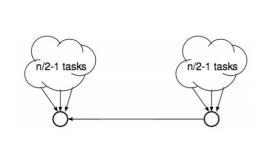
Mapping:

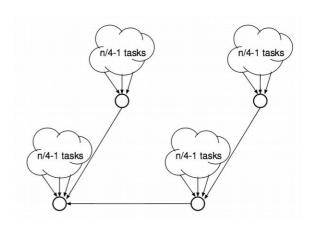


- Problem: Determine the maximum value among some large set of given values
 - Special case of a reduction
- Goal: Parallelize this solution, using Foster's methodology as a guide

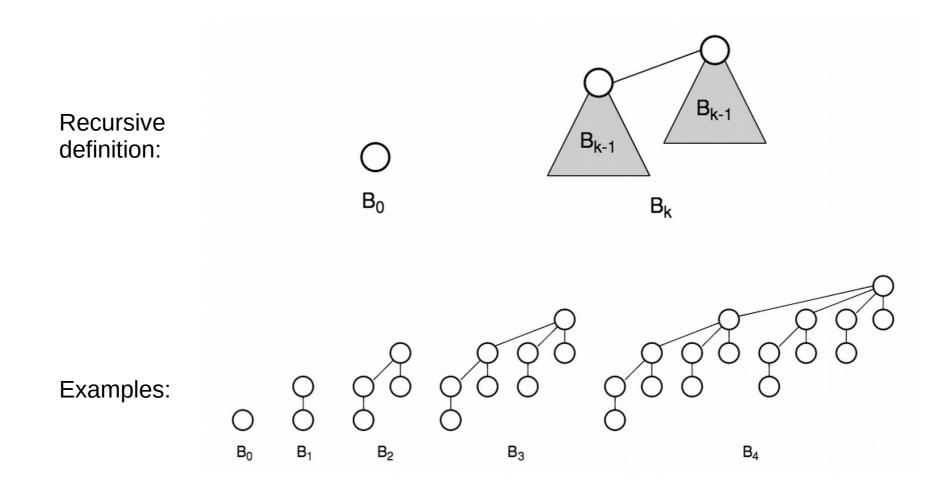
- Partitioning: each value is a primitive task
 - (1d domain decomposition)
 - One task (root) will compute final solution
- Communication: divide-and-conquer
 - Root task needs to compute max after n-1 tasks
 - Keep splitting the input space in half





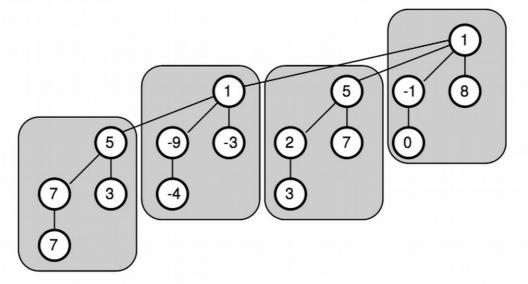


• Binomial tree with n = 2^k nodes



Agglomeration:

Group *n* leafs of the tree:



Mapping:

The same (actually, in the agglomeration phase, use n such that you end up with p tasks).

Random number generation

- Goal: Generate pseudo-random numbers in a distributed way
- Problem: We wish to retain some notion of reproducibility
 - In other words: results should be deterministic, given the RNG seed
 - This means we can't depend on the ordering of distributed communications
- Problem: We wish to avoid duplicated series of generated numbers
 - This means we can't just use the same generator in all processes

Random number generation

- Naive solution:
 - Generate all numbers on one node and scatter them
 - Like in our MPI analysis lab
 - Too slow!
- Can we do better? (Foster's)
 - Generating each random number is a task
 - Channels between subsequent numbers from the same seed
 - Tweak communication & agglomeration
 - Minimize dependencies

Random number generation

Goal:

Uniform randomness and reproducibility

 $L_{k+1} = a_L L_k \mod m$ $R_{k+1} = a_R R_k \mod m$

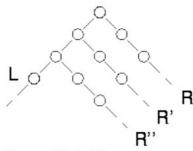


Figure 10.1: The random tree method. Two generators are used to construct a tree of random numbers. The right generator is applied to elements of the sequence L generated by the left generator to generate new sequences R, R', R'', etc.

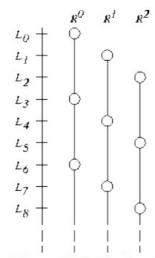


Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint subsequence of the sequence constructed by the left generator's sequence.

Matrix access patterns

```
void multiply_matrices(int *A, int *B, int *R, int n)
 {
     int i, j, k;
     for (i = 0; i < n; i++) {
         for (j = 0; j < n; j++) {
             R[i*n+j] = 0;
             for (k = 0; k < n; k++) {
                 R[i*n+j] += A[i*n+k] * B[k*n+j];
         }
                                               R=AB
               B (2x2)
                       R (2x2)
(ZxZ)
```

Common paradigms

- Grid/mesh-based nearest-neighbor simulation
 - Often includes math-heavy computations
 - Linear algebra and systems of equations
 - Dense vs. sparse matrices
 - Newer: adaptive mesh and multigrid simulations
- Worker pools / task queues
 - Newer: adaptive cloud computing
- Pipelined task phases
 - Newer: MapReduce
- Divide-and-conquer tree-based computation
 - Often combined with other paradigms (worker pools and pipelines)

Data Science

- Data science is an interdisciplinary field that extracts knowledge and insight from data
 - The data are often large, unstructured, and/or noisy
 - Motivation often comes from social sciences
 - Process usually informed by statistics
 - Analysis usually requires application of CS
 - Databases and data processing
 - Machine learning and artificial intelligence
 - Data visualization and human-computer interaction
 - Parallel and distributed systems

Big Data

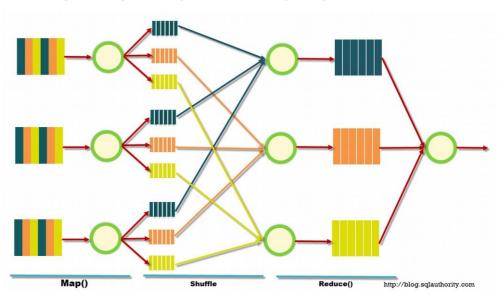
- Big data is a broad term for analyzing or processing large data sets
 - Exact size depends on the organization and task
 - Ranges from gigabytes to petabytes or exabytes
 - Often requires handling streaming data
 - Informally understood to begin at "the point at which the current approach begins to fail"
 - Requires new tools or a revised approach

MapReduce

- Parallel/distributed system paradigm for "big data" processing
 - Uses a specialized file system and takes advantage of independent tasks
 - Originally developed at Google (along with GFS)
 - Currently popular: Apache Hadoop and HDFS
 - General languages: Java, Python, Ruby, etc.
 - Specialized languages: Pig (data flow language) or Hive (SQL-like)
 - Growing quickly: Apache Spark (more generic w/ in-memory processing)
 - For streaming data: Apache Storm, Google BigQuery, Azure Synapse

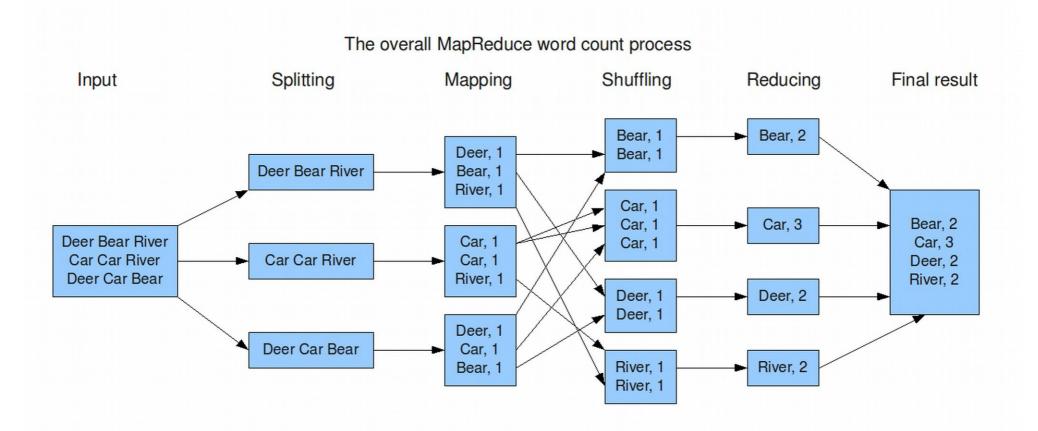
Phases

- Map (process local data)
- Shuffle (distributed sort)
- Reduce (combine results)



MapReduce

Word count example



Apache Spark (Python)

WORD COUNT

MONTE CARLO PI

```
def sample(p):
    x, y = random(), random()
    return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
        .map(sample) \
        .reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)</pre>
```

A word of caution

- It is easy to over-engineer "big data" solutions
 - Most "big data" problems aren't really that big
 - E.g., if your data set fits on a single hard drive, it's probably not a big data problem
 - Traditional pipe-based or shared-memory solutions will be simpler and possibly even faster
 - Case study: "Command-line Tools can be 235x Faster than your Hadoop Cluster"
 - https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
 - KISS principle: "Keep It Simple, Stupid"