CS 470

&
Spring 2024 4 —

_—

Mike Lam, Professor

Networks (Preview for P3)

Content taken from IPP 2.3.3 and the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)
Various online sources (including wikipedia.org and openclipart.org)

Topologies — how a network is arranged (hardware)

Routing — how traffic navigates a network (hardware and software)

Protocols — how machines communicate (software, low-level)

IPC paradigms — how processes communicate (software, high-level)

& ,,(#l

* |PC paradigms — how processes communicate
(software, high-level)

* |nter-process communication (IPC)

- Message-passing (explicit)
 Symmetric (SPMD) vs. asymmetric (differentiated hosts)
* Sockets and MPI

- Remote procedure calls (implicit)
e Synchronous vs. asynchronous

I Remote Procedure Call (RPC)

e Key idea: transparency

- It should look like the procedure call is happening locally
— Similar in spirit to PGAS remote memory accesses
- Implement server / client stubs to handle the call

* Parameter marshalling

- Preparing parameters for transmission over a network

Client machine Server machine
Client process Server process
1. Client call to ;
procedure Implementation 6. Stub makes
. Wait for result of add local call to "add
Client \ R e S L Server stub .
- —{_k=add(ij) —
/\ \ - Client stub [~)
Call remote Return proc: "add"” T —_—
procedure from call 2. Stub builds int.__val() G
message int: VaF(]) messag
A
1 [i
Request , |_proc: ‘add” | 4. Server OS
Reply Client OS mli \{falf_!) Server OS hands message
Server —---mmmo oo — Ik | int:_ val(j) to server stub
Call local procedure Time —p
and return results 3. Message is sent

across the network
Figure 4-6. Principle of RPC between a client and server program.
Figure 4-7. The steps involved in a doing a remote computation through RPC.

Client Wait for result Client Wait for acceptance

/ N

7

Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure 1ime —» Server Call local procedure Time —»
and return results
(a) (b)

Figure 4-10. (a) The interaction between client and server in a traditional RPC.
(b) The interaction using asynchronous RPC.

Wait for Interrupt client
acceptance
Client --_Q-__ \]
7 A
Call remote ?eturn ! ot
rocedure rom ca eturn
g results Acknowledge
Accept
Request request
SEMIEN === o ——— =S e
Call local procedure \ Time ——»
Call client with
one-way RPC

Figure 4-11. A client and server interacting through two asynchronous RPCs.

I P3 - DHT

e Distributed hash table

n MPI ranks / processes

2 threads per rank

* Server
* Client

Keys assigned to ranks via
provided hash function

RPC wrappers for local table

operations

* Rough structure suggested
* You design the exact protocol

Input file:

proc @

put xyz 5
put bar 99
put z 7
sync

get xyz
get blah
get gw
size

proc 1

put baz 1
put stuff 2
SYNC

MPI MPI MPI MP
rank 0 rank 1 rank 2 rank 3
Server SErver SErver SErver
*rcad ‘rmn’ thread thread
put (xyz:5) put (baz: 1)
Loca] @i 0R > oyme
{implicit)
put (bar:99)
| T L NP . -
put (stuff:2)
@ [Local sync
P . [implicit)
. put (z:7) :
- - - - P . L B I -) -
sYNC i
sync [explicit) H
. [explicit)
get (xyz) =5
@ [Locay
get (2]
Q- e -
il = = = * n s s s e s ssesssensnnls e nssses == -
. get L'Ew_-.-]_ N .
e = === === - =
= K BT LD
. size
T I E L EEE RO RN TR .-
_3:::::::::'255 """" -
T S i ellieioilieliolie (el il 11
ol ittt == 2
= 1414241 1
;//:5 /f/ //f j/f
PO dump P1dump B2 dump E3 dump
¥z 5 stuff: 2 bar: 99 z 7
baz: 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

