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Networks (Preview for P3)

Content taken from IPP 2.3.3 and the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)
Various online sources (including wikipedia.org and openclipart.org)



Topologies — how a network is arranged (hardware)

Routing — how traffic navigates a network (hardware and software)

Protocols — how machines communicate (software, low-level)

IPC paradigms — how processes communicate (software, high-level)
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* |PC paradigms — how processes communicate
(software, high-level)



* |nter-process communication (IPC)

- Message-passing (explicit)
 Symmetric (SPMD) vs. asymmetric (differentiated hosts)
* Sockets and MPI

- Remote procedure calls (implicit)
e Synchronous vs. asynchronous



I Remote Procedure Call (RPC)

e Key idea: transparency

- It should look like the procedure call is happening locally
— Similar in spirit to PGAS remote memory accesses
- Implement server / client stubs to handle the call

* Parameter marshalling

- Preparing parameters for transmission over a network
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Figure 4-6. Principle of RPC between a client and server program.
Figure 4-7. The steps involved in a doing a remote computation through RPC.
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Figure 4-10. (a) The interaction between client and server in a traditional RPC.
(b) The interaction using asynchronous RPC.
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Figure 4-11. A client and server interacting through two asynchronous RPCs.



I P3 - DHT

e Distributed hash table

n MPI ranks / processes

2 threads per rank

* Server
* Client

Keys assigned to ranks via
provided hash function

RPC wrappers for local table

operations

* Rough structure suggested
* You design the exact protocol

Input file:

proc @

put xyz 5
put bar 99
put z 7
sync

get xyz
get blah
get gw
size

proc 1

put baz 1
put stuff 2
SYNC
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*rcad ‘rmn’ thread thread
put (xyz:5) put (baz: 1)
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PO dump P1dump B2 dump E3 dump
¥z 5 stuff: 2 bar: 99 z 7
baz: 1
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