Networks

Content taken from IPP 2.3.3 and the following:

"Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 4)
Various online sources (including wikipedia.org and openclipart.org)

Topologies — how a network is arranged (hardware)

Routing — how traffic navigates a network (hardware and software)

Protocols — how machines communicate (software, low-level)

IPC paradigms — how processes communicate (software, high-level)

= ,(#l

e Topologies — how a network is arranged
(hardware)

I Network topologies

* A network topology Is an arrangement of components or
nodes in a system and their connections (e.g., a graph)

OINR Y

Ring Mesh Star Fully Connected

cocsce % &%

Lme Tree

from https://en.wikipedia.org/wiki/Network_topology

I Network topologies

* In which topology Is every node connected to exactly two
other nodes?

- A. Ring
- B. Star
- C. Fully connected
- D. Line
- LA B
Ring Mesh Star Fully Connected
QL9
O-O0-0-0-00 ‘XX

Line Tree Bus

I Network topologies

* A network topology is an arrangement of components or
nodes in a system and their connections (e.g., a graph)

- Ring, star, line, and tree allow simultaneous connections but
disallow some pairs of point-to-point communication

- Fully connected and bus allow direct any-to-any
communication but do not scale well

OINK L,

Ring Mesh Star Fully Connected

LA A
000000 ‘XX

Line Tree Bus

I Evaluating topologies

* Full network:
— Diameter: maximum number of hops between nodes on a network
— Total number of links required (every link costs money!)

* Between two nodes:

- Bandwidth: maximum rate at which data can be transmitted
e Throughput: measured rate of actual data transmission (usually less than theoretical maximum)
- Latency: time between start of send and reception of first data

* Important: how do these metrics scale as you add nodes?

OINR Y,

Ring Mesh Star Fully Connected
LA A
0-0-0-0-00 ‘XX

Line Tree Bus

I Evaluating topologies

* In which topology (or topologies) does the diameter remain
unchanged as you scale up the number of nodes?

- A. Ring
- B. Star
- C. Fully connected
- D. Line
- ONAkE
Ring Mesh Star Fully Connected
QQQ
O-0-0-0-00 ‘XX

Line Tree Bus

I Evaluating topologies

* Bisection: divide the network into two equal partitions

— Bisection width: number of simultaneous communications between
the two partitions

— Bisection bandwidth: total data rate between the partitions
— Typically done in such a way that minimizes bisection bandwidth
— This represents network performance with a worst-case bottleneck

[T/ B B A

= s

A B B A

Two different bisections of a network

I Evaluating topologies

* In which topology is the minimum bisection bandwidth the
highest as you scale up the number of nhodes?

- A. Ring
- B. Star
— C. Fully connected
- D. Line
o L3Nk
Ring Mesh Star Fully Connected
Q Q9
O-O-0-0-00 ‘XX

Line Tree Bus

I Evaluating topologies

 What Is the most important network metric for a
realtime distributed health monitoring system where
the system must respond as soon as possible to
changes in any user’s heart rate, blood pressure, etc.?

- A. Bandwidth

- B. Latency

- C. Diameter

- D. Bisection width

- E. Bisection bandwidth

Crossbar switches

 Switched interconnects allow
multiple simultaneous paths
between components

- (Graphically, use squares for
nodes and circles for switches)

* A crossbar switch uses a matrix
of potential connections to create
ad-hoc paths between nodes

(-_'_ i
(— ;
{ 09 %ﬂ?—*@
A \ /

O ety
mun

9 i Vs O
:1 \J\)—)h? \T} 7 \l/
\—;.:]—) —O (l\)_ > \//-t/ > <l>

@ E : 2]
. I f) f‘\
M2 (O— ¢ O ‘,
[4L . T
mow (a)
B _}} (7
<T \j[/
(;] (ii)
(b)
afcE ol
ot T L |
LLB'—/F\O N oSN
= =
[kl : | | |

* Omega network: crossbar of crossbars
- Each individual switch is a 2-by-2 crossbar

* Multi-stage network w/ dedicated switching nodes
— Easy routing based on binary host numbers (O=left, 1=right)

000 001 010 011 100 101 110 111

0 1 . 3 R 5 6 7

Rank0 (0,0 @

#h#ﬁ-—ﬂ- 10 | M| checksum

SHONO = COpONOw
&

g

from https://en.wikipedia.org/wiki/Butterfly_network

010 | M| checksum

0 M | checksum

I HPC interconnects

* In an HPC system, the network is called an interconnect

- Common patterns: switched bus, mesh/torus, hypercube
— Connected via switches vs. connected directly

nisll computedl-12

T T p— Toroidal Mesh

Our cluster (switched bus)

I HPC Iinterconnects

* In our cluster, which of the following is computeO1 NOT connected
to via a single bus hop?

- A. compute02.cluster.cs.jmu.edu
- B. compute08.cluster.cs.jmu.edu
- C. nfsOl.cluster.cs.jmu.edu

— D. login02.cluster.cs.jmu.edu

- E. stu.cs.jmu.edu

mu
134, 126, 30.0,/24

...
Ell
%

login02 B
T
#
: ntp
cluster. s, jru. edu

10,50, 50, 0,/24" o

101-112

nisll computedl-12 ! |

I Meshes and tori

* Nodes are connected to several neighbors

- Non-uniform memory access to non-immediate neighbors

Oo000n O%
:

\
I T ey Sy Oy I C =
!
- H H H H C
B 1
{HHHH THHH
e
2D Regular Mesh 2D Torus 3D Torus

(or “toroidal mesh”)

https://en.wikipedia.org/wiki/Torus_interconnect

* Inductive definition:

— 0-D hypercube: a single node

- n-D hypercube: two (n-1)-D hypercubes with
connections between corresponding nodes

* E.g., a 3-D hypercube contains two 2-D hypercubes

e

fapy
o =l I%il Sy
3

0 1 2 3 4

AT EN=<X

=
=/
3

https://en.wikipedia.org/wiki/Hypercube

I Fat trees

* Hierarchical tree-based topology
— Links near the root have a higher bandwidth

Evaluation category Bus Ring 2Dmesh 2Dtorus Hypercube Fattree Fully connected

Performance
BWpgicoetion 10 # links | 2 8 16 32 32 1024
Max (ave.) hop count 1(1) 32(16) 14 (7) 8(4) 6(3) 11 (9) 1(1)
Cost
1/0 ports per switch NA 3 5 5 7 4 64
Number of switches NA 64 64 64 64 192 64
Number of net. links | 64 112 128 192 320 2016
Total number of links | 128 176 192 256 384 2080

Figure E.15 Performance and cost of several network topologies for 64 nodes.The bus is the standard reference
at unit network link cost and bisection bandwidth. Values are given in terms of bidirectional links and ports. Hop
count includes a switch and its output link, but not the injection link at end nodes. Except for the bus, values are
given for the number of network links and total number of links, including injection/reception links between end

node devices and the network.
One port per node; nodes attached to switches.
Hennessy and Patterson, 2007.

I HPC Interconnect Technologies

e Ethernet: 10/100 Mbps — 100 Gbps
- Early versions used shared-medium coaxial cable
- Newer versions use twisted pair or fiber optic with hubs or switches
 InfiniBand (IB): 24-300 Gbps w/ 0.5us latency
- Packet-based switched fabric (bus, fat tree, or mesh/torus)
- Very loose API; more formal spec provided by OpenFabrics Alliance
- Used on many current high-performance clusters
- Vendors: Mellanox, Intel, and Oracle
 OmniPath (Intel) or Aries / Slingshot (Cray)
— Proprietary interconnects for HPC machines

1o 1.5 interface Link Transier Packets {LTPs) a Amymmetric ik

Layer 2 to 1.5
sagments data ino
=] =

OPENFABRICS

InfiniBand 4X ALLIANCE [1 Fiit= 65 bits | 16 Fiits + 16b = 1056 bit LTA

* Routing — how traffic navigates a network
(hardware and software)

I Routing

 Circuit switching
- Paths are pre-allocated for an entire session
- All data is routed along the same path
— Higher setup costs and fewer simultaneous communications
- Constant latency and throughput

e Packet switching

- Break data into independent, addressed packets

- Packets are routed independently

— No setup costs and no restriction on simultaneous communications
- Resiliency to network failures and changing conditions

- Variable (and often unpredictable) latency and throughput

O
e ©

Unicast Anycast Geocast
(one-to-one) (one-to-nearest) (one-to-proximate)

O

O —©O
o O

Multicast Broadcast
(one-to-many) (one-to-all)

from https://en.wikipedia.org/wiki/Routing#Delivery_schemes

I Routing

* Which routing paradigm is most appropriate for
streaming an esports championship?

- A. Unicast

- B. Anycast
— C. Geocast
. o e ®]
— O O
D. Multicast 20 «es o5
® @© ® O O
- E. Broadcast s
@
O
e, “%
Multicast Broadcast
(one-to-many) (one-to-all)

I Overlays

* Overlay: a network built on top of another network

- |P multicast: technique for sending data to multiple
recipients over an IP network using UDP

e Group addressing (IGMP)
 Tree-based distribution

- Distributed hash tables (e.g., Chord)
- XMPP - Jabber/Gtalk chat protocol
— Tor network

I Tor network

* Overlay network for anonymity

* Onion routing: multiple layers of obfuscation
— At each layer, data is encrypted and sent to a random Tor relay
- Sequence of relays form a virtual circuit that is difficult to trace
- No single relay connects the source and destination directly

Ef) How Tor Works &5 Tornode

- « 4 unencrypted link
- encrypted link

Alice
|l A = =

Alice's Tor client
picks a random path to

destination server. Green - -

links are encrypted, red - :; ==

links are in the clear. 3 : \ e Jane
- + I : t::'-t';_:

e Protocols — how machines communicate
(software, low-level)

Networking principles

* Distributed system components are often unreliable

* How do we build a reliable network using unreliable hardware
and software?

- Abstraction helps by hiding details where possible

- Protocols define well-structured communication patterns

- Layered / stacked protocols build on each other

- Each layer adds metadata to help solve a specific problem
* Another guiding principle: the end-to-end principle

— Application-specific functions ought to reside in the end hosts of a
network rather than in intermediary nodes whenever possible.

For more info:
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend. pdf

I Networking principles

* Which of the following Is a violation of the end-
to-end principle?
- A. Public key encryption
- B. ISP-based acceleration of Netflix traffic
- C. Client-server chat programs
- D. Web browser ad-blockers
- E. Cross-platform video game multiplayer

I QoS concerns

* Quality of Service (QoS) guarantees

Possible reasons to violate end-to-end principle
Minimum required bit rate (bandwidth)
Maximum delay to set up a session

Maximum end-to-end delay (latency)

Maximum delay variance (jitter)

Maximum round-trip delay

Possibility of expedited forwarding
Synchronization mechanisms

Examples: MPEG-2, HLS

I Q0S concerns

* Which QoS concern would be most important
for streaming video?

- A. Minimum Dbitrate

- B. Maximum setup delay

- C. Maximum latency

- D. Maximum |jitter

- E. Possiblility of expedited forwarding

I Networking protocols

Routing: choosing a path through a network

Datagram: self-contained, encapsulated package of data and

- Also called a frame: (layer 2), a packet (layer 3), or a segment (layer 4)
Protocol: rules for exchanging data (often using datagrams)

IPv4 header

(from https://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm)

metadata capable of being routed
Checksums: data integrity verification mechanism
DT]Et -]VErSI_DI'I:‘r IHL il DSCP lCN i Total Length

[(Image: IP Header]

I Protocol design issues

e Connectionless vs. connection-oriented

- Is there a setup/teardown procedure required for
communication?

— No setup costs vs. faster speed after connection
* Synchronous vs. asynchronous

- Does the sender block after sending?
« E.g., MPI_Ssend vs. MPI_Isend

— Easier to debug and verify vs. faster communication
e Persistent vs. transient communication

— Are messages stored by the middleware?
— Guaranteed delivery vs. simplicity of middleware

I OSI| model layers

1) Physical: Transmission of raw bits over a physical medium (Ethernet, 802.11)
2) Data link: Reliable transmission of frames between two nodes (FC, 802.11)
3) Network: Structured transmission on a multi-node network (1P, ICMP)

4) Transport: Reliable transmission on a multi-node network (TCP, UDP)

5) Session: Managed communication sessions (RPC, NFS)

6) Presentation: Encoding and conversion of data (HTML, XML, JSON)

7) Application: Application-level abstractions (FTP, HTTP, SSH, MPI)

The 7 Layers of OSI

Transmit Receive

o, N
Devlta \'\‘ = User = o ‘ De;ta
Application layer I:I
Presentation Iayeri:l
Session layer l:’

— Transport layer - —
— Network layer - —
— Data link layer - —
— Physical layer - —
T— Physical Link —T

* |PC paradigms — how processes communicate
(software, high-level)

* |nter-process communication (IPC)

- Message-passing (explicit)

 Symmetric (SPMD) vs. asymmetric (differentiated hosts)
- Remote procedure calls (implicit)

e Synchronous vs. asynchronous

I Berkeley / POSIX Sockets

* API for inter-process communication

— Originally designed for BSD

- Later evolved into a POSIX standard

- Often used for low-level TCP and UDP communication

- Hosts identified by address (usually IP) and port number
- Passes "messages" (packets) between hosts

— Can use Unix pipes if both endpoints are on a single host

e Server

e Client

Socket: Create a new endpoint - Connect: Attempt to establish a

connection
e Server & client

- Write: Send data over a connection
- Read: Receive data over a connection
- Close: Destroy a connection

Server
|_socket 3 bind*I—H_listenT—H_accAept » read > write
. 4 \

! \

Bind: Attach a local address to a socket
Listen: Announce readiness for connections
Accept: Block until a request arrives

Synchronization point —] SHbiaweip)
v on point / Communication

! \

‘----..

! Y
[socket }—)@nnecﬂ—ﬂ&% close |
Client

Figure 4-15. Connection-oriented communication pattern using sockets.

I Socket primitives

* Which of the following is NOT a valid event sequence using
sockets? (other events may occur between the events in the
seguence)

- A. accept, write, read
- B. accept, read, write
- C. accept, listen, read
- D. listen, accept, read
- E. socket, connect, write

S

]

rver

socket 3 bind __listen accept l I
A 2 \

Synchronization point —

! . g \
/ Communication

\ |
socket } —»rconnectf»{ write ——»[read close |
Client

Figure 4-15. Connection-oriented communication pattern using sockets.

« MPI_Send

« MPI_Recv

« MPI_Bcast

« MPI_Scatter

« MPI_Gather

« MPI_Allgather
« MPI_Reduce

e MPI_Allreduce
« MPI_Alltoall

.%’.
\./

broadcast

Qgﬁ,
O

gather

from https://computing.1lnl.gov/tutoria

0?’.
\o/

scatter

QSﬁ?
=

reduction

ls/parallel_comp/

I Remote Procedure Call (RPC)

e Key idea: transparency

- It should look like the procedure call is happening locally
— Similar in spirit to PGAS remote memory accesses
- Implement server / client stubs to handle the call

* Parameter marshalling

- Preparing parameters for transmission over a network

Client machine Server machine
Client process Server process
1. Client call to ‘
procedure Implementation 6. Stub makes _
. Wait for result of add local call to "add
Client e — Server stub K= 2]
/\ \ | Client stub (K= addli) |
Call remote Return proc: "add")
procedure from call 2. Stub builds int__vall) - Stub npacks
message int: Var(]) messag
4
1 [i
Request , | _proc: "add 4. Server OS
& Reply Client OS mli vffalf!) Server OS hands message
Server —-mmmmoooo oo m— I N |_int:__ val(j) / to server stub
Call local procedure Time —p
and return results 3. Message is sent

across the network
Figure 4-6. Principle of RPC between a client and server program.
Figure 4-7. The steps involved in a doing a remote computation through RPC.

Client Wait for result Client Wait for acceptance

/ A

v

Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure 1ime —» Server Call local procedure Time —»
and return results
(a) (b)

Figure 4-10. (a) The interaction between client and server in a traditional RPC.
(b) The interaction using asynchronous RPC.

Wait for Interrupt client
acceptance
Client --_Q-__ \]
/ A
Call remote fFheturn ! ot
rocedure rom ca eturn
i results Acknowledge
Accept
Request request
SEMBN s==-7 - o === =
Call local procedure \ Time ———»
Call client with
one-way RPC

Figure 4-11. A client and server interacting through two asynchronous RPCs.

I Summary

Topologies — how a network is arranged (hardware)

Routing — how traffic navigates a network (hardware and software)
Protocols — how machines communicate (software, low-level)
IPC paradigms — how processes communicate (software, high-level)

Next time: how do we identify hosts on a network?
(e.g., what is a host’s name)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45

