

CS 470
Spring 2025

Mike Lam, Professor

Performance Tools

Software Tools

● Software tool: computer program used by developers
to create, debug, maintain or support other programs

Traditional Software Tools

● Text editors
● Version control
● Debuggers
● Profilers
● Test automation frameworks
● Deployment frameworks
● Integrated development environments (IDEs)

Traditional Software Tools

● Debuggers
– Purpose: finding and removing software defects
– Often done via a process monitoring interface

● Profilers
– Purpose: detecting performance characteristics and identifying

bottlenecks
– Often done via instrumentation (added code that tracks the

program's execution)
● Both of these are difficult in parallel and distributed systems

Traditional Debugging

● Mechanisms
– ptrace: system call that allows one process to control another

– Simulation: slower, but safer
● Common features

– Breakpoints and watchpoints
– Single-stepping (by instruction or line of code)
– Variable examination and modification
– In newer debuggers: reverse-stepping

● Free debuggers: gdb, lldb, Eclipse, Valgrind (Memcheck)

Parallel Debugging

● Multithreaded debugging can be difficult
– Must attach to the correct thread
– Must control other threads as well
– Nondeterminism means unpredictability
– GDB does include support for multithreading:

● http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

– Valgrind also provides the Helgrind error detector
● Distributed debugging is even harder

– Hundreds or thousands of nodes; millions of processes
– Enormous launch overhead
– Control and visualization issues
– tmpi: OSS tmux hack (https://github.com/Azrael3000/tmpi)

http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

Commercial debuggers

● Microsoft Visual Studio
● Intel Debugger
● Rational Purify
● RogueWave TotalView
● Allinea DDT

Performance Profiling

● Goal: gain insights concerning a program's performance
characteristics

● Common metrics
– Wall or CPU time
– Memory use, page faults, and cache misses
– Network traffic and saturation
– Energy use

● Common scopes
– Function
– Basic block
– Instruction
– Source code line

Measurement

● Instrumentation: inserting analysis code
– Binary vs. source
– Static vs. dynamic
– Best for event-based monitoring (e.g., function calls)

● Sampling: polling an analysis source
– Hardware counters

● Performance Application Programming Interface (PAPI)

– Randomized vs. periodic
– Averaging vs. min/max
– Best for continuous monitoring (e.g., memory usage)

Measurement

● Context
– Flat vs. call graph
– Partial vs. full context

● Profiling vs. tracing (latter builds time-series)
● Issues

– Overhead: added run time due to profiling software
– Perturbation: skewing of behavior due to profiling software
– Skid: execution may not stop immediately on sample

● Tradeoff: better information vs. lower overhead
– Instrumentation: more instrumentation points
– Sampling: higher frequency or less aggregation

GNU Profiler (gprof)

● Compile with “-pg” flag
● Run as usual; generates “gmon.out” file
● View results with “gprof” utility

– "gprof <executable>"

● See https://sourceware.org/binutils/docs/gprof/
for more documentation

● Google also has a multi-threaded profiler:
– https://github.com/gperftools/gperftools

https://sourceware.org/binutils/docs/gprof/
https://github.com/gperftools/gperftools

Callgrind/Cachegrind

● Run with Valgrind
– Callgrind: "valgrind --tool=callgrind <executable>"

– Cachegrind: "valgrind --tool=cachegrind <executable>"
● “--cache-sim=yes” or “--branch-sim=yes” to enable cache/CPU simulations

– This will produce a "*.out.xxxx" file with raw results (could be large!)

– Remember to call mpirun first if it’s an MPI program
● (And use cg_merge to merge multiple Cachegrind output files)

● Post-process results
– Callgrind: "callgrind_annotate <output-files>"

● GUI alternative: kcachegrind (or qcachegrind on Mac OS X)

– Cachegrind: "cg_annotate <output-file>" (“--auto=yes” for code)
● Dx = data cache (level X) Ix = instruction cache (level X)
● 1 = L1 cache L/LL = lowest level (on the cluster, this is L3)
● r = read w = write m = miss Ir = Instructions read

● See http://valgrind.org/docs/manual for more documentation

http://valgrind.org/docs/manual

Perf_events

● Sample-based performance profiler
– Kernel module reads performance counters

● More lightweight than Valgrind-based analysis
● Can sample many different events

– User space utility perf to interface with kernel
● perf record -F 49 <command>

– Generates perf.data file
● perf report -n [--stdio]
● perf annotate [--stdio]

– Cheat sheet link on resources page

Distributed Analysis

● Lots of data!
– Collect at each rank but only store compressed or

aggregated data
– Aggregate using a tree-based reduction structure to

reduce communication overhead
● Research projects: STAT and MRNet

Other HPC analysis tools

● HPCToolkit – Rice University
● Tuning and Analysis Utilities (TAU) – University of Oregon
● Open|SpeedShop - Krell Institute
● Scalasca
● Paraver

Tool frameworks

● Many analysis tools need similar functionality
– E.g., source/binary parsing or instrumentation

● Tool framework: a library that provides common
functionality upon which custom tools can be written
– Rose (source-based compiler framework)
– LLVM (binary-based compiler framework)
– Intel Pin (insert just-in-time binary instrumentation)
– Dyninst (insert binary instrumentation)
– Valgrind (track memory accesses)
– CRAFT (instrument floating-point arithmetic)

Modeling and autotuning

● Observation: modern systems have a lot of knobs
– Message size, block size, # of threads, # of processes
– Many of these factors influence each other
– Different runs could require different “optimal” settings

● Idea #1: autotune the system at runtime
– Managed by middleware (the autotuner)
– Overhead could be expensive
– Optimizing across multiple dimensions can be difficult

● Idea #2: build a model of these interactions
– Needs training data

Performance models

By Giu.natale - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49641314

● One popular model: roofline model
– Shows theoretical limits on performance
– Based on computation and communication bounds

communication-bound

computation-bound

https://commons.wikimedia.org/w/index.php?curid=49641314

Performance models

By Giu.natale - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49641314

Bandwidth
ceilings In-core ceilings

Locality walls

https://commons.wikimedia.org/w/index.php?curid=49641314

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

