CS 470
Spring 2025

Mike Lam, Professor

Performance Tools

* Software tool: computer program used by developers
to create, debug, maintain or support other programs

I Traditional Software Tools

Text editors
e Version control
* Debuggers

Profilers

Test automation frameworks
* Deployment frameworks

Integrated development environments (IDES)

I Traditional Software Tools

* Debuggers
- Purpose: finding and removing software defects
— Often done via a process monitoring interface

* Profilers

- Purpose: detecting performance characteristics and identifying
bottlenecks

- Often done via instrumentation (added code that tracks the
program's execution)

* Both of these are difficult in parallel and distributed systems

I Traditional Debugging

e Mechanisms

- ptrace: system call that allows one process to control another
— Simulation: slower, but safer

e Common features

— Breakpoints and watchpoints

- Single-stepping (by instruction or line of code)
- Variable examination and modification

- In newer debuggers: reverse-stepping

* Free debuggers: gdb, lldb, Eclipse, Valgrind (Memcheck)

I Parallel Debugging

* Multithreaded debugging can be difficult

- Must attach to the correct thread
- Must control other threads as well
— Nondeterminism means unpredictability

— GDB does include support for multithreading:
e http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

— Valgrind also provides the Helgrind error detector
 Distributed debugging is even harder

- Hundreds or thousands of nodes; millions of processes

- Enormous launch overhead

— Control and visualization issues

- tmpi: OSS tmux hack (https://github.com/Azrael3000/tmpi)

http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

Message Queues X

- - - 0 | Display mode
* Microsoft Visual Studio |
icr isual Studi == -
o Selectqueuestoshow |
* Intel Debugge
n ugger e
|
* Rational P |
I n u rI 384 | © show local ranks
| ® show global ranks
- | [Only ranks with messages
* R W [otalV !
oguevvave I[0otalview -
|
. | MPLCOMM WORLD
MPI_COMM_SELF
e Allinea DD R
L =
[Show Diagram Key |
[Update J
Text Communicator Queue | Pumter i From (local) | From (global) To(local) | 'Ib(glohz
Stacks g' 1 |Receive: 0x8... ‘MP| COMMUN... Receive ‘DXO ilﬂg 405 113 369 _5
Processes Threads Function - 2 | Receive: 0x8... -MPl CDMMI.IN....MCENQ .LDXO E135 i 135 251 251
32 132] = main (wave.c:334) 3 Receive: OxB... MPI COMMUN... Receive 0x0 1190 446 170 426
| | /home/david/allinea/forge/examples/wave.c:334 4| Receive: 0x8.., |MP1 m”””"'“;mea"e 0x0 !112 m 92 92 L
11] J11] | - @mca pmilobl 1|32 Processes: ranks 0-31 i ot e 4 i e il i
11 J11] | sched_yield (syScan-temprate.s:81]]
20] 120] | ®update (wave.c:199)
1[] 1] | update (wave.c:216) Z
321 132 &) orte_progress_thread_engine

g Visual Studio = RogueWave :
_ SeTe AT allinea
E1 | software DDT

I Performance Profiling

* Goal: gain insights concerning a program's performance
characteristics

e Common metrics

- Wall or CPU time
- Memory use, page faults, and cache misses
- Network traffic and saturation
- Energy use
« Common scopes
- Function
— Basic block
— Instruction
— Source code line

I Measurement

* Instrumentation: inserting analysis code

- Binary vs. source
- Static vs. dynamic
- Best for event-based monitoring (e.g., function calls)

« Sampling: polling an analysis source

- Hardware counters
* Performance Application Programming Interface (PAPI)
- Randomized vs. periodic

— Averaging vs. min/max
— Best for continuous monitoring (e.g., memory usage)

I Measurement

e Context

- Flat vs. call graph
— Partial vs. full context

Profiling vs. tracing (latter builds time-series)

e |SsSues

- Overhead: added run time due to profiling software
- Perturbation: skewing of behavior due to profiling software
— Skid: execution may not stop immediately on sample

Tradeoff: better information vs. lower overhead

- Instrumentation: more instrumentation points
- Sampling: higher frequency or less aggregation

I GNU Profiler (gprof)

 Compile with “-pg” flag
 Run as usual; generates “gmon.out” file
* View results with “gprof” utility

— "gprof <executable>"

e See https://sourceware.org/binutils/docs/gprof/
for more documentation

* Google also has a multi-threaded profiler:
- https://github.com/gperftools/gperftools

https://sourceware.org/binutils/docs/gprof/
https://github.com/gperftools/gperftools

I Callgrind/Cachegrind

* Run with Valgrind
— Callgrind: "valgrind --tool=callgrind <executable>"
— Cachegrind: "valgrind --tool=cachegrind <executable>"

 “--cache-sim=yes” or “--branch-sim=yes” to enable cache/CPU simulations
— This will produce a "*.out.xxxx" file with raw results (could be large!)
- Remember to call mpirun first if it's an MPI program

* (And use cg_merge to merge multiple Cachegrind output files)

* Post-process results
— Callgrind: "callgrind_annotate <output-files>"

« GUI alternative: kcachegrind (or qcachegrind on Mac OS X)
— Cachegrind: "cg_annotate <output-file>" (*--auto=yes” for code)

« Dx = data cache (level X) Ix = instruction cache (level X)
« 1=L1 cache L/LL = lowest level (on the cluster, this is L3)
 r =read w = write m = Miss Ir = Instructions read

e See http://valgrind.org/docs/manual for more documentation

http://valgrind.org/docs/manual

I Perf events

 Sample-based performance profiler

- Kernel module reads performance counters

* More lightweight than Valgrind-based analysis
* Can sample many different events

— User space utility perf to interface with kernel

e perf record -F 49 <command>

- Generates perf.data file
e perf report -n [--stdio]
« perf annotate [--stdio]

— Cheat sheet link on resources page

I Distributed Analysis

e | ots of datal

— Collect at each rank but only store compressed or
aggregated data

- Aggregate using a tree-based reduction structure to
reduce communication overhead

* Research projects: STAT and MRNet

Analysis
Tool

I Other HPC analysis tools

HPCToolkit — Rice University
Tuning and Analysis Utilities (TAU) — University of Oregon
Open|SpeedShop - Krell Institute

Scalasca

Paraver

hpcrun
«| Profile execution on Profile ||L__
CPUs and GPUs | Files [H
Y "
So_urce Opt.|m|zed GPU Binary Tr.ace -
Files Binary Files |H
\—/_\
Compile & Link v
hpcstruct
«| Analyze CPU/GPU w| Program
program structure Structure .
hpcviewer hpcprof/hpcprof-mpi /—\
Present trace view and Interpret profile P
profile view Database Correlate w/ source [¥ K R E L L

I Tool frameworks

* Many analysis tools need similar functionality
- E.g., source/binary parsing or instrumentation

* Tool framework: a library that provides common
functionality upon which custom tools can be written

- Rose (source-based compiler framework)

- LLVM (binary-based compiler framework)

- Intel Pin (insert just-in-time binary instrumentation)
— Dyninst (insert binary instrumentation)

- Valgrind (track memory accesses)

- CRAFT (instrument floating-point arithmetic)

I Modeling and autotuning

* Observation: modern systems have a lot of knobs

- Message size, block size, # of threads, # of processes
- Many of these factors influence each other
- Different runs could require different “optimal” settings

* |dea #1: autotune the system at runtime

- Managed by middleware (the autotuner)

- Overhead could be expensive

— Optimizing across multiple dimensions can be difficult
* |dea #2: build a model of these interactions

- Needs training data

Performance models

* One popular model: roofline model

- Shows theoretical limits on performance
- Based on computation and communication bounds

Performance [GFLOPS]
4
Bound based on bandwidth ,-

4 o Bound based on peak performance

computation-bound
1/2 -

L] T L L] 1 1 L] L} L} 1 1 1] 1 1 1
174 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]
By Giu.natale - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49641314

communication-bound

https://commons.wikimedia.org/w/index.php?curid=49641314

1/2

1/4

Performance [GFLOPS]

Y

Performance [GFLOPS]

1/2

1/4

JU

without Instruction Level Parallelism (ILP)

without Task Level Parallelism (TLP)

In-core ceilings

1/4 1/2 1 2 4 8 16 1/4 1/2 1 2 4 8
Operational Intensity [FLOPS/byte] Operational Intensity [FLOPS/byte]
A
- 70
@ \ar
S 17 Q?Jr b
5 =
@ n [=] .
g /2 2 Locality walls
[5°} w v a
E v U
L 1/4 1 LI (T =
g E
1 1 L] L]] 1 1 L] :
14 1)2 1 2 4 8 16

Operational Intensity [FLOPS/byte]

By Giu.natale - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49641314

Y

https://commons.wikimedia.org/w/index.php?curid=49641314

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

