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Performance Tools



* Software tool: computer program used by developers
to create, debug, maintain or support other programs



I Traditional Software Tools

Text editors
e Version control
* Debuggers

Profilers

Test automation frameworks
* Deployment frameworks

Integrated development environments (IDES)



I Traditional Software Tools

* Debuggers
- Purpose: finding and removing software defects
— Often done via a process monitoring interface

* Profilers

- Purpose: detecting performance characteristics and identifying
bottlenecks

- Often done via instrumentation (added code that tracks the
program's execution)

* Both of these are difficult in parallel and distributed systems



I Traditional Debugging

e Mechanisms

- ptrace: system call that allows one process to control another
— Simulation: slower, but safer

e Common features

— Breakpoints and watchpoints

- Single-stepping (by instruction or line of code)
- Variable examination and modification

- In newer debuggers: reverse-stepping

* Free debuggers: gdb, lldb, Eclipse, Valgrind (Memcheck)



I Parallel Debugging

* Multithreaded debugging can be difficult

- Must attach to the correct thread
- Must control other threads as well
— Nondeterminism means unpredictability

— GDB does include support for multithreading:
e http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

— Valgrind also provides the Helgrind error detector
 Distributed debugging is even harder

- Hundreds or thousands of nodes; millions of processes

- Enormous launch overhead

— Control and visualization issues

- tmpi: OSS tmux hack (https://github.com/Azrael3000/tmpi)


http://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html
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I Performance Profiling

* Goal: gain insights concerning a program's performance
characteristics

e Common metrics

- Wall or CPU time
- Memory use, page faults, and cache misses
- Network traffic and saturation
- Energy use
« Common scopes
- Function
— Basic block
— Instruction
— Source code line



I Measurement

* Instrumentation: inserting analysis code

- Binary vs. source
- Static vs. dynamic
- Best for event-based monitoring (e.g., function calls)

« Sampling: polling an analysis source

- Hardware counters
* Performance Application Programming Interface (PAPI)
- Randomized vs. periodic

— Averaging vs. min/max
— Best for continuous monitoring (e.g., memory usage)



I Measurement

e Context

- Flat vs. call graph
— Partial vs. full context

Profiling vs. tracing (latter builds time-series)

e |SsSues

- Overhead: added run time due to profiling software
- Perturbation: skewing of behavior due to profiling software
— Skid: execution may not stop immediately on sample

Tradeoff: better information vs. lower overhead

- Instrumentation: more instrumentation points
- Sampling: higher frequency or less aggregation



I GNU Profiler (gprof)

 Compile with “-pg” flag
 Run as usual; generates “gmon.out” file
* View results with “gprof” utility

— "gprof <executable>"

e See https://sourceware.org/binutils/docs/gprof/
for more documentation

* Google also has a multi-threaded profiler:
- https://github.com/gperftools/gperftools


https://sourceware.org/binutils/docs/gprof/
https://github.com/gperftools/gperftools

I Callgrind/Cachegrind

* Run with Valgrind
— Callgrind: "valgrind --tool=callgrind <executable>"
— Cachegrind: "valgrind --tool=cachegrind <executable>"

 “--cache-sim=yes” or “--branch-sim=yes” to enable cache/CPU simulations
— This will produce a "*.out.xxxx" file with raw results (could be large!)
- Remember to call mpirun first if it's an MPI program

* (And use cg_merge to merge multiple Cachegrind output files)

* Post-process results
— Callgrind: "callgrind_annotate <output-files>"

« GUI alternative: kcachegrind (or qcachegrind on Mac OS X)
— Cachegrind: "cg_annotate <output-file>" (*--auto=yes” for code)

« Dx = data cache (level X) Ix = instruction cache (level X)
« 1=L1 cache L/LL = lowest level (on the cluster, this is L3)
 r =read w = write m = Miss Ir = Instructions read

e See http://valgrind.org/docs/manual for more documentation


http://valgrind.org/docs/manual

I Perf events

 Sample-based performance profiler

- Kernel module reads performance counters

* More lightweight than Valgrind-based analysis
* Can sample many different events

— User space utility perf to interface with kernel

e perf record -F 49 <command>

- Generates perf.data file
e perf report -n [--stdio]
« perf annotate [--stdio]

— Cheat sheet link on resources page



I Distributed Analysis

e | ots of datal

— Collect at each rank but only store compressed or
aggregated data

- Aggregate using a tree-based reduction structure to
reduce communication overhead

* Research projects: STAT and MRNet

Analysis
Tool




I Other HPC analysis tools

HPCToolkit — Rice University
Tuning and Analysis Utilities (TAU) — University of Oregon
Open|SpeedShop - Krell Institute
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I Tool frameworks

* Many analysis tools need similar functionality
- E.g., source/binary parsing or instrumentation

* Tool framework: a library that provides common
functionality upon which custom tools can be written

- Rose (source-based compiler framework)

- LLVM (binary-based compiler framework)

- Intel Pin (insert just-in-time binary instrumentation)
— Dyninst (insert binary instrumentation)

- Valgrind (track memory accesses)

- CRAFT (instrument floating-point arithmetic)



I Modeling and autotuning

* Observation: modern systems have a lot of knobs

- Message size, block size, # of threads, # of processes
- Many of these factors influence each other
- Different runs could require different “optimal” settings

* |dea #1: autotune the system at runtime

- Managed by middleware (the autotuner)

- Overhead could be expensive

— Optimizing across multiple dimensions can be difficult
* |dea #2: build a model of these interactions

- Needs training data



Performance models

* One popular model: roofline model

- Shows theoretical limits on performance
- Based on computation and communication bounds
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